首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   42篇
  国内免费   21篇
安全科学   43篇
废物处理   37篇
环保管理   181篇
综合类   88篇
基础理论   233篇
环境理论   8篇
污染及防治   135篇
评价与监测   51篇
社会与环境   27篇
灾害及防治   9篇
  2023年   8篇
  2022年   16篇
  2021年   16篇
  2020年   16篇
  2019年   23篇
  2018年   38篇
  2017年   39篇
  2016年   49篇
  2015年   35篇
  2014年   34篇
  2013年   58篇
  2012年   37篇
  2011年   76篇
  2010年   46篇
  2009年   40篇
  2008年   45篇
  2007年   46篇
  2006年   45篇
  2005年   18篇
  2004年   24篇
  2003年   17篇
  2002年   13篇
  2001年   12篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1997年   12篇
  1996年   5篇
  1995年   7篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1984年   4篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有812条查询结果,搜索用时 31 毫秒
671.
Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate–pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.  相似文献   
672.
Past experience shows that inappropriate agricultural development in wetlands can undermine sustainability and may have profound social and economic repercussions for people dependent on the range of ecosystem services provided by those wetlands. Nonetheless, there is escalating pressure to expand agriculture within wetlands due to increasing population, in conjunction with efforts to increase food security. This paper describes the development of a semi-analytical framework for identifying, organizing and analyzing the complex factors that link people, agriculture and wetland ecosystems — an index of Working Wetland Potential (WWP). The method is based on a form of multi-criteria analysis that integrates biophysical and socio-economic aspects of wetland utilization. The WWP index emerges from the aggregation of two values: the first arising from an appraisal of both the biophysical and socio-economic suitability of using the wetland for agriculture; and the second resulting from an assessment of the possible hazards, in relation to both social welfare and the ecological character of the wetland. Hence, the approach provides a way to explicitly integrate biophysical and social aspects of wetland utilization in a single index to enable an initial assessment of the suitability of using a wetland for agriculture. Results from three contrasting wetlands in sub-Saharan Africa are presented.  相似文献   
673.
674.
Two aluminum water treatment residuals (Al-WTRs) from water treatment plants in Manatee County, FL and Punta Gorda, FL were evaluated as potential permeable reactive barrier (PRB) media to reduce groundwater phosphorus (P) losses. Short-term (<24 h) P sorption kinetics and long-term P sorption capacity were determined using batch equilibration studies. Phosphorus desorption was characterized following P loadings of 10, 20, 30, 40 and >70 g kg−1. Sorption and desorption studies were conducted on the <2.0 mm material and three size fractions within the <2.0 mm material. The effect of dissolved organic carbon (DOC) on P retention was determined by reacting Al-WTRs with P-spiked groundwater samples of varying initial DOC concentrations. Phosphorus sorption kinetics were rapid for all size fractions of both Al-WTRs (>98% P sorption effectiveness at shaking times ?2 h). The effect of DOC was minimal at <150 mg DOC L−1, but modest reductions (<22%) in P sorption effectiveness occurred at 587 mg DOC L−1. The P sorption capacities of the Manatee and Punta Gorda Al-WTRs (<2.0 mm) are ∼44 g kg−1 and >75 g kg−1, respectively, and the lifespan of an Al-WTR PRB is likely many decades. Desorption was minimal (<2% of the P sorbed) for cumulative P loadings <40 g kg-l, but increased (<9% of the P sorbed) at cumulative P loads >70 g kg−1. The <2.0 mm Manatee and Punta Gorda Al-WTRs are regarded as ideal PRB media for P remediation.  相似文献   
675.
We investigate the long-range transport potential (LRTP) of five different classes of hypothetical chemical pollutants (volatile, multimedia, semivolatile, particle-associated and hydrophilic) during a low pressure weather event using a novel 2 (x- and z-axis)-Dimensional Multi-Media Meteorological Model (2D4M). The atmosphere (z-axis) is described by three atmospheric layers, where two layers constitute the boundary layer and the third layer the free troposphere. The 2D4M can describe distinct weather events on a regional scale and calculate the LRTP of chemicals as a function of time during these events. Four weather factors are used to model weather events and their influence on the atmospheric transport of chemicals: (1) temperature, (2) wind speed and mixing dynamics of the troposphere, (3) hydroxyl radical concentrations and (4) precipitation. We have modeled the impact of variability in each of these factors on LRTP of pollutants during a front event associated with a low pressure period that interrupts a dominant high pressure system. The physico-chemical properties of the pollutant determine which specific weather factors contribute most to variability in transport potential during the event. Volatile and multimedia chemicals are mainly affected by changing atmospheric mixing conditions, wind speeds and OH radical concentrations, while semivolatile substances are also affected by temperature. Low-vapor-pressure pollutants that are particle-associated, and water-soluble pollutants are most strongly affected by precipitation. Some chemical pollutants are efficiently transported from the boundary layer into the upper troposphere during the modeled low pressure event and are transported by much higher wind speeds than in the boundary layer. Our model experiments show that the transport potential of volatile, multimedia and semivolatile compounds is significantly increased during a front event as a result of efficient tropospheric mixing and fast wind speeds in the upper troposphere, whereas low-volatility and hydrophilic chemicals are largely scavenged from the atmosphere. In future LRTP assessment of chemical contaminants as required by the Stockholm Convention and the convention on long-range transboundary air pollution, it is therefore advised to prioritize volatile, multimedia and semivolatile chemicals that are identified in initial screening.  相似文献   
676.
Studies of multiple stressors in Africa often focus on vulnerable inland communities. Rising concentrations of the world’s poor live in coastal rural–urban areas with direct dependencies on marine as well as terrestrial ecosystem goods and services. Using participatory methods we elicited perceptions of stressors and their sources, impacts and consequences held by coastal communities in eastern Africa (Mtwara in Tanzania and Maputo in Mozambique). Respondent-informed timelines suggest wars, economic policies and natural increase have led to natural resource-dependent populations in marginal, previously little-inhabited lowland coastal areas. Respondents (n = 91) in interviews and focus groups rank climate stressors (temperature rise/erratic rain) highest amongst human/natural stressors having negative impacts on livelihoods and wellbeing (e.g., cross-scale cost of living increases including food and fuel prices). Sources of stress and impacts were mixed in time and space, complicating objective identification of causal chains. Some appeared to be specific to coastal areas. Respondents reported farms failing and rising dependence on stressed marine resources, food and fuel prices and related dependence on traders and credit shrunk by negative global market trends. Development in the guise of tourism and conservation projects limited access to land–sea livelihoods and resources in rural–urban areas (coastal squeeze). Mental modelling clarified resource user perceptions of complex linkages from local to international levels. We underline risks of the poor in marginal coastal areas facing double or multiple exposures to multiple stressors, with climate variability suggesting the risks of climate change.  相似文献   
677.
Petersen MA  Sale TC  Reardon KF 《Chemosphere》2007,67(8):1573-1581
Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.  相似文献   
678.
679.
Vacuum filter socks were evaluated for recovery efficiency of powdered Bacillus atrophaeus spores from two non-porous surfaces, stainless steel and painted wallboard and two porous surfaces, carpet and bare concrete. Two surface coupons were positioned side-by-side and seeded with aerosolized Bacillus atrophaeus spores. One of the surfaces, a stainless steel reference coupon, was sized to fit into a sample vial for direct spore removal, while the other surface, a sample surface coupon, was sized for a vacuum collection application. Deposited spore material was directly removed from the reference coupon surface and cultured for enumeration of colony forming units (CFU), while deposited spore material was collected from the sample coupon using the vacuum filter sock method, extracted by sonication and cultured for enumeration. Recovery efficiency, which is a measure of overall transfer effectiveness from the surface to culture, was calculated as the number of CFU enumerated from the filter sock sample per unit area relative to the number of CFU enumerated from the co-located reference coupon per unit area. The observed mean filter sock recovery efficiency from stainless steel was 0.29 (SD = 0.14, n = 36), from painted wallboard was 0.25 (SD = 0.15, n = 36), from carpet was 0.28 (SD = 0.13, n = 40) and from bare concrete was 0.19 (SD = 0.14, n = 44). Vacuum filter sock recovery quantitative limits of detection were estimated at 105 CFU m(-2) from stainless steel and carpet, 120 CFU m(-2) from painted wallboard and 160 CFU m(-2) from bare concrete. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling for biological agents such as Bacillus anthracis.  相似文献   
680.
Environmental forensics is an established discipline in North America, but has yet to make an impact within Europe and more specifically within the UK. In this paper we explore the reasons for this and explore the nature and fundamental philosophy that underlies this discipline. Case studies can be used to explore the complexity that can be associated with an environmental forensic investigation and we argue that there is a demand for professionals with skills in forensic practice within the environmental sector today. The paper finishes by suggesting that environmental forensics is a discipline of its moment within Europe for which the Higher Education sector must now cater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号