首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   783篇
  免费   42篇
  国内免费   21篇
安全科学   43篇
废物处理   38篇
环保管理   183篇
综合类   88篇
基础理论   235篇
环境理论   8篇
污染及防治   163篇
评价与监测   52篇
社会与环境   27篇
灾害及防治   9篇
  2023年   8篇
  2022年   16篇
  2021年   16篇
  2020年   16篇
  2019年   23篇
  2018年   38篇
  2017年   40篇
  2016年   50篇
  2015年   35篇
  2014年   34篇
  2013年   58篇
  2012年   42篇
  2011年   79篇
  2010年   46篇
  2009年   40篇
  2008年   49篇
  2007年   49篇
  2006年   46篇
  2005年   19篇
  2004年   28篇
  2003年   20篇
  2002年   14篇
  2001年   15篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   12篇
  1996年   5篇
  1995年   8篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1990年   2篇
  1989年   1篇
  1984年   4篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有846条查询结果,搜索用时 203 毫秒
311.
When annual average PM2.5 (fine particulate matter sized 2.5 microns and less) data for 2005 became available in April 2006 and the 3-yr average PM2.5 concentration in an area just north of the Houston Ship Channel reached 15.0 µg/m3, the Texas Commission on Environmental Quality (TCEQ) initiated daily collection of quartz fiber as well as Teflon PM2.5 filter samples for chemical speciation analysis. The purpose of the chemical speciation analysis was to use the speciation data, together with meteorological data and hourly TEOM (tapered element oscillating microbalance) PM2.5 mass data, to identify the causes of the high PM2.5 concentrations affecting the monitoring site and the neighborhood. The ultimate purpose was to target emission reduction efforts to sources contributing to the high measured PM2.5 concentrations. After a year of data collection, it was recognized that a specific source, unpaved driveways and loading areas along the Ship Channel and dirt tracked onto Clinton Drive, the main artery running east-west north of the Ship Channel, were the primary cause for the Clinton Drive site's measuring PM2.5 concentrations significantly higher than other sites in Houston. The source characterization and remediation steps that have led to sustained reduced concentrations are described in this paper.

Implications: With PM2.5 exceedances it can be essential to have or develop chemical speciation data as part of the process of identifying the source types causing exceedances of an annual standard. Positive matrix factorization (PMF) analysis proved to be a powerful tool that identified the two locally emitted species contributing to exceedances, which did not occur at other sites in the region. They were calcium sulfate (gypsum), an industrial by-product, and soil minerals. Other data analysis approaches were necessary to distinguish North African dust events, which PMF failed to identify.  相似文献   
312.
ABSTRACT

Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 μm (PM2.5) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-tem-perature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated that susceptible individuals are being harmed by ambient PM. Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution. Time- and size-resolved PM measurements are needed for testing mechanistic toxicological hypotheses, for characterizing the relationship between combustion operating conditions and transient emissions, and for source apportionment studies to develop air quality plans. Citations are provided to more specialized reviews, and the concluding comments make suggestions for further research.  相似文献   
313.
Whitewater parks (WWPs) typically consist of instream structures that enhance recreational boating by constricting flow into a steep chute that generates a hydraulic jump in a downstream pool. Concerns have been raised that high velocities resulting from WWPs may be inhibiting fish movement during critical life stages. We evaluated the effects of WWPs on upstream fish passage by concurrently monitoring fish movement and hydraulic conditions at three WWP structures and three adjacent natural control (CR) sites in a wadeable river in northern Colorado. Fish movement was tracked with a network of Passive Integrated Transponder antennas over a 14‐month period. Individual fishes (n = 1,639), including brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss), were tagged and released within WWP and CR sites. Detailed hydraulic conditions occurring during the study period were evaluated with a fully 3D model. Results reveal the WWPs monitored in this study are not a complete barrier to upstream salmonid movement, but differences in passage efficiency from release location range from 29 to 44% in WWP sites and 37 to 63% for CR sites and the suppression of movement is related to body length. Small numbers of monitored nonsalmonids were inadequate to directly observe effects on their movement; however, it is highly probable that movement of smaller native fishes is also suppressed. Hydraulic modeling helps in the design of WWP structures that protect fish passage.  相似文献   
314.
The “Measured Annual Nutrient loads from AGricultural Environments” (MANAGE) database was published in 2006 to expand an early 1980s compilation of nutrient export (load) data from cultivated and pasture/range land at the field or farm scale. Then in 2008, MANAGE was updated with 15 additional studies, and nitrogen (N) and phosphorus (P) concentrations in runoff were added. Since then, MANAGE has undergone significant expansion adding N and P water quality along with relevant management and site characteristic data from: (1) 30 runoff studies from forested land uses, (2) 91 drainage water quality studies from drained land, and (3) 12 additional runoff studies from cultivated and pasture/range land uses. In this expansion, an application timing category was added to the existing fertilizer data categories (rate, placement, formulation) to facilitate analysis of 4R Nutrient Stewardship, which emphasizes right fertilizer source, rate, time, and place. In addition, crop yield and N and P uptake data were added, although this information was only available for 21 and 7% of studies, respectively. Inclusion of these additional data from cultivated, pasture/range, and forest land uses as well as artificially drained agricultural land should facilitate expanded spatial analyses and improved understanding of regional differences, management practice effectiveness, and impacts of land use conversions and management techniques. The current version is available at www.ars.usda.gov/spa/manage-nutrient .  相似文献   
315.
Exposure to traffic emission is harmful to human health. Emission inventories are essential to public health policies aiming at protecting human health, especially in areas with incomplete or nonexistent air pollution monitoring networks. In Brazil, for example, only 1.7% of municipal districts have a monitoring network, and only a few studies have reported data on vehicle emission inventories. No studies have presented emission inventories by municipality. In this study, we predicted vehicular emissions for 5570 municipal districts in Brazil during the period 2001–2012. We used a top-down method to estimate emissions. Carbon dioxide (CO2) is the pollutant with the highest emissions, with approximately 190 million tons per year during the period 2001–2012). For the other traffic-related pollutants, we predicted annual emissions of 1.5 million tons for carbon monoxide (CO), 1.2 million tons of nitrogen oxides (NOx), 209,000 tons of nonmethane hydrocarbons (NMHC), 58,000 tons of particulate matter (PM), and 42,000 tons for methane (CH4). From 2001 to 2012, CO, NMHC, and PM emissions decreased by 41, 33, and 47%, respectively, whereas those CH4, NOx, and CO2 increased by 2, 4, and 84%, respectively. We estimated uncertainties in our study and found that NOx was the pollutant with the lowest percentage difference, 8%, and NMHC with the highest one, 30%. For CO, CH4, CO2, and PM, the values were 22, 14, 21, and 20%, respectively. Finally, we found that during 2001 and 2012 emissions increased in the Northwest and Northeast. In contrast, pollutant emissions, except for CO2, decreased in the Southeast, South, and part of Midwest. Our predictions can be critical to efforts developing cost-effective public policies tailored to individual municipal districts in Brazil.

Implications: Emission inventories may be an alternative approach to provide data for air quality forecasting in areas where air quality data are not available. This approach can be an effective tool in developing spatially resolved emission inventories.  相似文献   

316.
317.
Point velocity measurements conducted by traversing a Pitot tube across the cross section of a flow conduit continue to be the standard practice for evaluating the accuracy of continuous flow-monitoring devices. Such velocity traverses were conducted in the exhaust duct of a reduced-scale analog of a stationary source, and mean flow velocity was computed using several common integration techniques. Sources of random and systematic measurement uncertainty were identified and applied in the uncertainty analysis. When applicable, the minimum requirements of the standard test methods were used to estimate measurement uncertainty due to random sources. Estimates of the systematic measurement uncertainty due to discretized measurements of the asymmetric flow field were determined by simulating point velocity traverse measurements in a flow distribution generated using computational fluid dynamics. For the evaluated flow system, estimates of relative expanded uncertainty for the mean flow velocity ranged from ±1.4% to ±9.3% and depended on the number of measurement locations and the method of integration.
Implications:Accurate flow measurements in smokestacks are critical for quantifying the levels of greenhouse gas emissions from fossil-fuel-burning power plants, the largest emitters of carbon dioxide. A systematic uncertainty analysis is necessary to evaluate the accuracy of these measurements. This study demonstrates such an analysis and its application to identify specific measurement components and procedures needing focused attention to improve the accuracy of mean flow velocity measurements in smokestacks.  相似文献   
318.
319.
Chromium (VI) [Cr (VI)] biosorption by four resistant autochthonous bacterial strains was investigated to determine their potential for use in sustainable marine water-pollution control. Maximum exchange between Cr (VI) ions and protons on the cells surfaces were at 30–35 °C, pH?2.0 and 350–450 mg/L. The bacterial strains effectively removed 79.0–90.5 % Cr (VI) ions from solution. Furthermore, 85.3–93.0 % of Cr (VI) ions were regenerated from the biomasses, and 83.4–91.7 % of the metal was adsorbed when the biomasses was reused. Langmuir isotherm performed better than Freundlich isotherm, depicting that Cr (VI) affinity was in the sequence Rhodococcus sp. AL03Ni?>?Burkholderia cepacia AL96Co?>?Corynebacterium kutscheri FL108Hg?>?Pseudomonas aeruginosa CA207Ni. Biosorption isotherms confirmed that Rhodococcus sp. AL03Ni was a better biosorbent with a maximum uptake of 107.46 mg of Cr (VI) per g (dry weight) of biomass. The results highlight the high potential of the organisms for bacteria-based detoxification of Cr (VI) via biosorption.  相似文献   
320.
We propose a framework in which thresholds of potential concern (TPCs) and limits of acceptable change (LACs) are used in concert in the assessment of wetland condition and vulnerability and apply the framework in a case study. The lower Murrumbidgee River floodplain (the ‘Lowbidgee’) is one of the most ecologically important wetlands in Australia and the focus of intense management intervention by State and Federal government agencies. We used a targeted management stakeholder workshop to identify key values that contribute to the ecological significance of the Lowbidgee floodplain, and identified LACs that, if crossed, would signify the loss of significance. We then used conceptual models linking the condition of these values (wetland vegetation communities, waterbirds, fish species and the endangered southern bell frog) to measurable threat indicators, for which we defined a management goal and a TPC. We applied this framework to data collected across 70 wetland storages’, or eco-hydrological units, at the peak of a prolonged drought (2008) and following extensive re-flooding (2010). At the suggestion of water and wetland mangers, we neither aggregated nor integrated indices but reported separately in a series of chloropleth maps. The resulting assessment clearly identified the effect of rewetting in restoring indicators within TPC in most cases, for most storages. The scale of assessment was useful in informing the targeted and timely management intervention and provided a context for retaining and utilising monitoring information in an adaptive management context.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号