首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   783篇
  免费   42篇
  国内免费   21篇
安全科学   43篇
废物处理   38篇
环保管理   183篇
综合类   88篇
基础理论   235篇
环境理论   8篇
污染及防治   163篇
评价与监测   52篇
社会与环境   27篇
灾害及防治   9篇
  2023年   8篇
  2022年   16篇
  2021年   16篇
  2020年   16篇
  2019年   23篇
  2018年   38篇
  2017年   40篇
  2016年   50篇
  2015年   35篇
  2014年   34篇
  2013年   58篇
  2012年   42篇
  2011年   79篇
  2010年   46篇
  2009年   40篇
  2008年   49篇
  2007年   49篇
  2006年   46篇
  2005年   19篇
  2004年   28篇
  2003年   20篇
  2002年   14篇
  2001年   15篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   12篇
  1996年   5篇
  1995年   8篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1990年   2篇
  1989年   1篇
  1984年   4篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有846条查询结果,搜索用时 234 毫秒
331.
The use of a two-step thermal-oxidative analysis (TOA) technique for quantification of the mass of total carbon (TC) and elemental carbon (EC) of turbine engine-borne particulate matter (PM) has been evaluated. This approach could be used in lieu of analysis methods which were developed to characterize diluted PM. This effort is of particular interest as turbine engine PM emissions typically have a higher EC content than ambient aerosols, and filter sample mass loadings can be significantly greater than recommended for existing analysis techniques. Analyses were performed under a pure oxygen environment using a two-step temperature profile; reference carbon and actual PM samples were used to identify appropriate analysis conditions. Thermal gravimetric analysis (TGA) methods were used to provide guidance on the nature of the carbon in several of the materials. This was necessary as a standard reference material does not exist for determination of the EC fraction in PM. The TGA also assisted in identifying an appropriate temperature range for the first-stage of the TOA method. Quantification of TC and EC for turbine engine PM samples using TOA was compared to results obtained using the NIOSH 5040 thermal-optical method. For first-stage TOA temperatures of 350°C and 400°C, excellent agreement between the techniques was observed in both the quantified TC and EC, supporting the viability for using TOA for analysis of turbine engine PM samples. A primary benefit of using TOA for these types of PM samples is that filters with relatively high PM mass loadings (sampled at the emission source) can be readily analyzed. In addition, an entire filter sample can be evaluated, as compared to the use of a filter punch sample for the NIOSH technique. While the feasibility of using a TOA method for engine PM samples has been demonstrated, future studies to estimate potential OC charring and oxidation of EC-type material may provide additional data to assess its impact on the OC/EC fractions for other carbon-type measurements.

Implications: This work presents results and procedures of an analytical method for the determination of total and elemental carbon, i.e., TC and EC present in combustion source particulate matter samples. In general, it is shown that the LECO TOA methodology is as reliable and comprehensive as NIOSH 5040 for determining TC and EC carbon types in particulate matter present in turbine emission sources, and should be considered as an alternative. Principles of the methodology, differences, and corresponding agreement with the standard NIOSH 5040 method and TGA analysis are discussed.  相似文献   

332.
333.
Novel aerial methane (CH4) detection technologies were used in this study to identify anomalously high-emitting oil and gas (O&G) facilities and to guide ground-based “leak detection and repair” (LDAR) teams. This approach has the potential to enable a rapid and effective inspection of O&G facilities under voluntary or regulatory LDAR programs to identify and mitigate anomalously large CH4 emissions from a disproportionately small number of facilities. This is the first study of which the authors are aware to deploy, evaluate, and compare the CH4 detection volumes and cost-effectiveness of aerially guided and purely ground-based LDAR techniques. Two aerial methods, the Kairos Aerospace infrared CH4 column imaging and the Scientific Aviation in situ aircraft CH4 mole fraction measurements, were tested during a 2-week period in the Fayetteville Shale region contemporaneously with conventional ground-based LDAR. We show that aerially guided LDAR can be at least as cost-effective as ground-based LDAR, but several variable parameters were identified that strongly affect cost-effectiveness and which require field research and improvements beyond this pilot study. These parameters include (i) CH4 minimum dectectable limit of aerial technologies, (ii) emission rate size distributions of sources, (iii) remote distinction of fixable versus nonfixable CH4 sources (“leaks” vs. CH4 emissions occurring by design), and (iv) the fraction of fixable sources to total CH4 emissions. Suggestions for future study design are provided.

Implications: Mitigation of methane leaks from existing oil and gas operations currently relies on on-site inspections of all applicable facilities at a prescribed frequency. This approach is labor- and cost-intensive, especially because a majority of oil and gas–related methane emissions originate from a disproportionately small number of facilities and components. We show for the first time in real-world conditions how aerial methane measurements can identify anomalously high-emitting facilities to enable a rapid, focused, and directed ground inspection of these facilities. The aerially guided approach can be more cost-effective than current practices, especially when implementing the aircraft deployment improvements discussed here.  相似文献   

334.
335.
Observed spatial patterns in natural systems may result from processes acting across multiple spatial and temporal scales. Although spatially explicit data on processes that generate ecological patterns, such as the distribution of disease over a landscape, are frequently unavailable, information about the scales over which processes operate can be used to understand the link between pattern and process. Our goal was to identify scales of mule deer (Odocoileus hemionus) movement and mixing that exerted the greatest influence on the spatial pattern of chronic wasting disease (CWD) in northcentral Colorado, USA. We hypothesized that three scales of mixing (individual, winter subpopulation, or summer subpopulation) might control spatial variation in disease prevalence. We developed a fully Bayesian hierarchical model to compare the strength of evidence for each mixing scale. We found strong evidence that the finest mixing scale corresponded best to the spatial distribution of CWD infection. There was also evidence that land ownership and habitat use play a role in exacerbating the disease, along with the known effects of sex and age. Our analysis demonstrates how information on the scales of spatial processes that generate observed patterns can be used to gain insight when process data are sparse or unavailable.  相似文献   
336.
Cloacal protuberances (CP) in male birds result from spermatic engorgement of storage tubules around the cloaca during the breeding season. We examined seasonal changes in the volume and orientation of the CP in the New Zealand stitchbird Notiomystis cincta. The male stitchbird has one of the largest recorded CPs for any species (max = 1,570 mm3), with CP volume increasing by almost 400% between the non-breeding and breeding seasons. While sperm competition has been positively correlated with the magnitude of CP storage in other species, no evidence previously existed for the CP improving copulation efficiency. By measuring the relative orientation of the CP throughout the year, we show that not only does the CP increase in size as males become sexually active, it also changes its orientation by approximately 60°. This results in it shifting from facing posteriorly to becoming almost perpendicular to the abdomen. This cloacal erection improves the apposition of the male and female cloacal openings during face-to-face forced copulation in this species. This provides the first reported evidence supporting the copulation efficiency hypothesis of the avian CP. While the magnitude of seasonal changes in female cloacal volume was similar to males, female cloacal orientation remained virtually unchanged across seasons. This difference between the sexes is likely to reflect differing selection pressures for optimizing sperm transfer. In females, a posterior-facing cloaca is ideal for both waste evacuation and sperm reception, whereas, for the male, a posterior-facing cloaca is well suited for waste evacuation, but possibly hinders sperm delivery. Changes in male cloacal orientation from the non-breeding to the breeding season are a likely reflection of conflict in this dual function. Evidence of changes in CP orientation in another passerine species suggests this phenomenon is widespread and also important for understanding related fields such as sperm competition, forced copulation and constraints on the evolution of the avian intromittent organ.  相似文献   
337.
338.
ABSTRACT: A frequency analysis approach for the prediction of flow characteristics at ungaged locations is applied to a region of high annual precipitation and low topography in north and central Florida. Stationary time series of annual flows are fitted with the lognormal distribution and estimated parameters of the distribution are fitted by third order trend surfaces. These explain 65 and 74 percent of the observed variances in the mean and standard deviation, respectively. Predictions of parameters are then made for several locations previously unused in the study and they are used to estimate the return periods of various flows from the lognormal distribution. Application of the Kolmogorov-Smirnov goodness-of-fit test suggests that only one of the five test stations can be considered significantly different from the observed data, confirming the applicability of this technique.  相似文献   
339.
To understand the consequences of human accelerated environmental change, it is important to document the effects on natural populations of an increasing frequency of extreme climatic events. In stream ecosystems, recent climate change has resulted in extreme variation in both thermal and hydrological regimes. From 2001 to 2004, a severe drought in western United States corresponded with earlier emergence of the adult stage of the high-altitude stream mayfly, Baetis bicaudatus. Using a long-term database from a western Colorado stream, the peak emergence date of this mayfly population was predicted by both the magnitude and date of peak stream flow, and by the mean daily water temperature, suggesting that Baetis may respond to declining stream flow or increasing water temperature as proximate cues for early metamorphosis. However, in a one-year survey of multiple streams from the same drainage basin, only water temperature predicted spatial variation in the onset of emergence of this mayfly. To decouple the effects of temperature and flow, we separately manipulated these factors in flow-through microcosms and measured the timing of B. bicaudatus metamorphosis to the adult stage. Mayflies emerged sooner in a warmed-water treatment than an ambient-water treatment; but reducing flow did not accelerate the onset of mayfly emergence. Nonetheless, using warming temperatures to cue metamorphosis enables mayflies to time their emergence during the descending limb of the hydrograph when oviposition sites (protruding rocks) are becoming available. We speculate that large-scale climate changes involving warming and stream drying could cause significant shifts in the timing of mayfly metamorphosis, thereby having negative effects on populations that play an important role in stream ecosystems.  相似文献   
340.
Species phenology is increasingly being used to explore the effects of climate change and other environmental stressors. Long-term monitoring data sets are essential for understanding both patterns manifest by individual species and more complex patterns evident at the community level. This study used records of 78 butterfly species observed on 626 days across 27 years at a site in northern California, USA, to build quadratic logistic regression models of the observation probability of each species for each day of the year. Daily species probabilities were summed to develop a potential aggregate species richness (PASR) model, indicating expected daily species richness. Daily positive and negative contributions to PASR were calculated, which can be used to target optimum sampling time frames. Residuals to PASR indicate a rate of decline of 0.12 species per year over the course of the study. When PASR was calculated for wet and dry years, wet years were found to delay group phenology by up to 17 days and reduce the maximum annual expected species from 32.36 to 30. Three tests to determine how well the PASR model reflected the butterfly fauna dynamics were all positive: We correlated probabilities developed with species presence/absence data to observed abundance by species, tested species' predicted phenological patterns against known biological characteristics, and compared the PASR curve to a spline-fitted curve calculated from the original species richness observations. Modeling individual species' flight windows was possible from presence/absence data, an approach that could be used on other similar records for butterfly communities with seasonal phenologies, and for common species with far fewer dates than used here. It also provided a method to assess sample frequency guidelines for other butterfly monitoring programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号