首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   6篇
  国内免费   9篇
安全科学   7篇
废物处理   14篇
环保管理   50篇
综合类   72篇
基础理论   98篇
污染及防治   124篇
评价与监测   26篇
社会与环境   37篇
灾害及防治   5篇
  2023年   3篇
  2022年   7篇
  2021年   4篇
  2020年   6篇
  2019年   13篇
  2018年   11篇
  2017年   21篇
  2016年   15篇
  2015年   14篇
  2014年   21篇
  2013年   23篇
  2012年   25篇
  2011年   21篇
  2010年   22篇
  2009年   19篇
  2008年   19篇
  2007年   36篇
  2006年   18篇
  2005年   18篇
  2004年   13篇
  2003年   16篇
  2002年   17篇
  2001年   13篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1971年   2篇
  1970年   2篇
  1964年   1篇
  1962年   1篇
  1960年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有433条查询结果,搜索用时 62 毫秒
81.
The ecotoxicological implications of a flooding disaster were investigated with the exceptional Elbe flood in August 2002 as an example. Sediment samples were taken shortly after the flood at 37 sites. For toxicity assessment the midge Chironomus riparius (Insecta) and the mudsnail Potamopyrgus antipodarum (Gastropoda) were exposed to the sediment samples for 28 days. For a subset of 19 sampling sites, the contamination level and the biological response of both species were also recorded before the flood in 2000. The direct comparison of biological responses at identical sites revealed significant differences for samples taken before and immediately after the flood. After flood sediments of the river Elbe caused both higher emergence rates in the midge and higher numbers of embryos in the mudsnail. Contrary to expectations the toxicity of the sediments decreased after the flood, probably because of a dilution of toxic substances along the river Elbe and a reduction in bioavailability of pollutants as a result of increasing TOC values after the flood.  相似文献   
82.
Trichloroacetic acid (TCA, CCl(3)COOH) is a phytotoxic chemical. Although TCA salts and derivates were once used as herbicides to combat perennial grasses and weeds, they have since been banned because of their indiscriminate herbicidal effects on woody plant species. However, TCA can also be formed in the atmosphere. For instance, the high-volatile C(2)-chlorohydrocarbons tetrachloroethene (TECE, C(2)Cl(4)) and 1,1,1-trichloroethane (TCE, CCl(3)CH(3)) can react under oxidative conditions in the atmosphere to form TCA and other substances. The ongoing industrialisation of Southeast Asia, South Africa and South America means that use of TECE as solvents in the metal and textile industries of these regions in the southern hemisphere can be expected to rise. The increasing emissions of this substance--together with the rise in the atmospheric oxidation potential caused by urban activities, slash and burn agriculture and forest fires in the southern hemisphere--could lead to a greater input/formation of TCA in the vegetation located in the lee of these emission sources. By means of biomonitoring studies, the input/formation of TCA in vegetation was detected at various locations in South America, North America, Africa, and Europe.  相似文献   
83.
Background, Aim and Scope The cow-calf (Bos taurus) industry in subtropical United States and other parts of the world depends almost totally on grazed pastures. Establishment of complete, uniform stand of bahiagrass (BG) in a short time period is important economically. Failure to obtain a good BG stand early means increased encroachment of weeds and the loss of not only the initial investment costs, but production and its cash value. Forage production often requires significant inputs of lime, N fertilizer, and less frequently of P and K fertilizers. Domestic sewage sludge or biosolids, composted urban plant debris, waste lime, phosphogypsum, and dredged materials are examples of materials that can be used for fertilizing and liming pastures. Perennial grass can be a good choice for repeated applications of sewage sludge. Although sewage sludge supply some essential plant nutrients and provide soil property-enhancing organic matter, land-application programs still generate some concerns because of possible health and environmental risks involved. The objectives of this study were to evaluate the cumulative and residual effects of repeated applications of sewage sludge on (i) bahiagrass (BG, Paspalum notatum Flügge) production over years with (1997–2000) and without (2001–2002) sewage sludge applications during a 5-yr period, and (ii) on nutrients status of soil that received annual application of sewage sludge from 1997 to 2000 compared with test values of soils in 2002 (with no sewage sludge application) in South Florida.Methods The field experiment was conducted at the University of Florida Agricultural Research and Education Center, Ona, FL (27o26’N, 82o55’W) on a Pomona fine sandy soil. With the exception of the control, BG plots received annual sewage sludge and chemical fertilizers applications to supply 90 or 180 kg total N ha–1 yr–1 from 1997 to 2000. Land application of sewage sludge and fertilizer ceased in 2001 season. In early April 1998, 1999, and 2000, plots were mowed to 5-cm stubble and treated with the respective N source amendments. The experimental design was three randomized complete blocks with nine N-source treatments: ammonium nitrate (AMN), slurry biosolids of pH 7 (SBS7), slurry biosolids of pH 11 (SBS11), lime-stabilized cake biosolids (CBS), each applied to supply 90 or 180 kg N ha–1, and a nonfertilized control (Control). Application rates of sewage sludge were calculated based on the concentration of total solids in materials as determined by the American Public Health Association SM 2540G method and N in solids. The actual amount of sewage sludge applications was based on the amount required to supply 90 and 180 kg N ha–1. Sewage sludge materials were weighed in buckets and uniformly applied to respective BG plots. Soil samples were collected in June 1997, June 1999, and in June 2002 from 27 treatment plots. In 1997 and 1999, soil samples were collected using a steel bucket type auger from the 0- to 20-, 20- to 40-, 40- to 60-, and 60- to 100-cm soil depths. Forage was harvested on 139, 203, 257, and 307 day of year (DOY) in 1998; 125, 202, 257, and 286 DOY in 1999; 179, 209, 270, and 301 DOY in 2000; and on 156 and 230 DOY in 2002 (no sewage sludge applications) to determine the residual effect of applied sewage sludge following repeated application. Forage yield and soils data were analyzed using analysis of variance (PROC ANOVA) procedures with year and treatment as the main plot and sub-plot, respectively. As a result of significant year effects on forage yield, data were reanalyzed annually (i.e., 1998, 1999, 2000, and 2002).Results and Discussion All sewage sludges used in this study were of class B in terms of USEPA’s pathogens and pollutant concentration limit. Pathogen and chemical composition of the class B sewage sludge that were used in the study were all in compliance with the USEPA guidelines. The liquid sludge (SBS11) had the lowest fecal coliform counts (0.2 x 106 CFU kg–1) while the cake sewage sludge (CBS) had the greatest coliform counts of 178 x 106 CFU kg–1. The fecal coliform counts for SBS7 was about 33 x 106 CFU kg–1. Average soil test values in June 2002 exhibited: i) decrease in TIN (NO3-N + NH4-N), TP, K, Ca, Mg, Mn, and Fe; and ii) slight increase in Zn and Cu when compared with the June 1997 soil test results. The overall decrease in soil test values in 2002 might be associated with nutrient cycling and plant consumption. Although the average BG forage yield in 2002 (2.3 ± 0.7 Mg ha–1) was slightly lower than in 2000 (3.5 ± 1.2 Mg ha–1), yield differences in 2002 between the control (1.2 + 0.2 Mg ha–1) and treated plots (2.3 ± 0.5 Mg ha–1 to 3.3 ± 0.6 Mg ha–1) were indicative of a positive residual effect of applied sewage sludge. This study has shown that excessive build up of plant nutrients may not occur in beef cattle pastures that repeatedly received sewage sludge while favoring long-term increased forage yield of BG. All sources of N (sewage sludge and AMN) gave better forage production than the unfertilized control during years with sewage sludge application (1997–2000) and also during years with no sewage sludge application (2001–2002). The favorable residual effects of applied sewage sludge in 2002 may have had received additional boost from the amount of rainfall in the area.Conclusions Repeated applications of sewage sludge indicate no harmful effects on soil quality and forage quality. Our results support our hypothesis that repeated land application of sewage sludge to supply 90 and 180 kg N ha–1 would not increase soil sorption for nutrients and trace metals. Results have indicated that the concentrations of soil TIN and TP declined by almost 50% in plots with different nitrogen sources from June 1997 to June 2002 suggesting that enrichment of nitrogen and phosphorus is insignificant. The concentrations of soil nitrogen and phosphorus in 2002 following repeated application of sewage sludge were far below the contamination risk in the environment. The residual effect of these sewage sludge over the long term can be especially significant in many areas of Florida where only 50% of the 1 million ha of BG pastures are given inorganic nitrogen yearly.Recommendation and Outlook Successive land application of sewage sludge for at least three years followed by no sewage sludge application for at least two years may well be a good practice economically because it will boost and/or maintain sustainable forage productivity and at the same time minimize probable accumulation of nutrients, especially trace metals. Consecutive applications of sewage sludge may result in build up of some trace metals in some other states with initial high metallic content, but in this study, no detrimental effects on soil chemical properties were detected. The possibilities for economically sound application strategies are encouraging, but more and additional research is required to find optimal timing and rates that minimizes negative impacts on soil quality in particular or the environment in general. For proper utilization of sewage sludge, knowledge of the sewage sludges’ composition, the crop receiving it, are absolutely crucial, so that satisfactory types and rates are applied in an environmentally safe manner. There is still much to be learned from this study and this investigation needs to continue to determine whether the agricultural and ecological objectives are satisfied over the longer term.  相似文献   
84.
85.
ABSTRACT

Impacts of cattle production vary among different production systems, but data on their distribution is scarce for most world regions. In this work, we combine datasets on cattle vaccination locations and land cover in a regression framework to define and map major cattle production systems in the Argentinean Dry Chaco. We also explore how cattle occurrence relates to spatial determinants. Results indicate that the region harbors about 5.5 million heads. Cattle density was mainly described by the share of pasture (69.9%), cropland (28.1%) and aridity (23.8%). We identified 12-major cattle production systems: six cow-calf, three whole-cycle, and three fattening systems. Of these, four systems had high woodland cover (>85%). Data generated is available in a website. Understanding the distribution of cattle production systems is important to assess the environmental impacts of beef production at broad scales. Integrating vaccination data with land-cover information provides a promising avenue to identify livestock systems.  相似文献   
86.
Indices of biotic integrity have become an established tool to quantify the condition of small non-tidal streams and their watersheds. To investigate the effects of watershed characteristics on stream biological condition, we present a new technique for regressing IBIs on watershed-specific explanatory variables. Since IBIs are typically evaluated on an ordinal scale, our method is based on the proportional odds model for ordinal outcomes. To avoid overfitting, we do not use classical maximum likelihood estimation but a component-wise functional gradient boosting approach. Because component-wise gradient boosting has an intrinsic mechanism for variable selection and model choice, determinants of biotic integrity can be identified. In addition, the method offers a relatively simple way to account for spatial correlation in ecological data. An analysis of the Maryland Biological Streams Survey shows that nonlinear effects of predictor variables on stream condition can be quantified while, in addition, accurate predictions of biological condition at unsurveyed locations are obtained.  相似文献   
87.
Accumulations of iron, manganese, and arsenic occur in the Chandina alluvium of southeastern Bangladesh within 2.5 m of the ground surface. These distinctive orange-brown horizons are subhorizontal and consistently occur within 1 m of the contact of the aerated (yellow-brown) and water-saturated (gray) sediment. Ferric oxyhydroxide precipitates that define the horizons form by oxidation of reduced iron in pore waters near the top of the saturated zone when exposed to air in the unsaturated sediment. Hydrous Fe-oxide has a high specific surface area and thus a high adsorption capacity that absorbs the bulk of arsenic also present in the reduced pore water, resulting in accumulations containing as much as 280 ppm arsenic. The steep redox gradient that characterizes the transition of saturated and unsaturated sediment also favors accumulation of manganese oxides in the oxidized sediment. Anomalous concentrations of phosphate and molybdenum also detected in the ferric oxyhydroxide-enriched sediment are attributed to sorption processes.  相似文献   
88.
In order to make projections for future air-quality levels, a robust methodology is needed that succeeds in reconstructing present-day air-quality levels. At present, climate projections for meteorological variables are available from Atmospheric-Ocean Coupled Global Climate Models (AOGCMs) but the temporal and spatial resolution is insufficient for air-quality assessment. Therefore, a variety of methods are tested in this paper in their ability to hindcast maximum 8 hourly levels of O3 and daily mean PM10 from observed meteorological data. The methods are based on a multiple linear regression technique combined with the automated Lamb weather classification. Moreover, we studied whether the above-mentioned multiple regression analysis still holds when driven by operational ECMWF (European Center for Medium-Range Weather Forecast) meteorological data. The main results show that a weather type classification prior to the regression analysis is superior to a simple linear regression approach. In contrast to PM10 downscaling, seasonal characteristics should be taken into account during the downscaling of O3 time series. Apart from a lower explained variance due to intrinsic limitations of the regression approach itself, a lower variability of the meteorological predictors (resolution effect) and model deficiencies, this synoptic-regression-based tool is generally able to reproduce the relevant statistical properties of the observed O3 distributions important in terms of European air quality Directives and air quality mitigation strategies. For PM10, the situation is different as the approach using only meteorology data was found to be insufficient to explain the observed PM10 variability using the meteorological variables considered in this study.  相似文献   
89.
This paper describes a novel statistical approach to derive ecologically relevant sediment quality guidelines (SQGs) from field data using a nonparametric empirical Bayesian method (NEBM). We made use of the Norwegian Oil Industrial Association database and extracted concurrently obtained data on species density and contaminant levels in sediment samples collected between 1996 and 2001. In brief, effect concentrations (ECs) of each installation (i.e., oil platform) at a given reduction in species density were firstly derived by fitting a logistic-type regression function to the relationship between the species density and the corresponding concentration of a chemical of concern. The estimated ECs were further improved by the NEBM which incorporated information from other installations. The distribution of these improved ECs from all installations was determined nonparametrically by the kernel method, and then used to determine the hazardous concentration (HC) which can be directly linked to the species loss (or the species being protected) in the sediment. This method also enables an accurate estimation of the lower confidence limit of the HC, even when the number of observations was small. To illustrate the effectiveness of this novel technique, barium, cadmium, chromium, copper, mercury, lead, tetrahydrocannabinol, and zinc were chosen as example contaminants. This novel approach can generate ecologically sound SQGs for environmental risk assessment and cost-effectiveness analysis in sediment remediation or mud disposal projects, since sediment quality is closely linked to species density.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号