首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9743篇
  免费   1篇
  国内免费   3篇
安全科学   1篇
废物处理   770篇
环保管理   1216篇
综合类   943篇
基础理论   3149篇
污染及防治   1752篇
评价与监测   1017篇
社会与环境   899篇
  2023年   2篇
  2022年   6篇
  2021年   2篇
  2019年   1篇
  2018年   1476篇
  2017年   1373篇
  2016年   1196篇
  2015年   125篇
  2014年   16篇
  2013年   26篇
  2012年   469篇
  2011年   1343篇
  2010年   695篇
  2009年   603篇
  2008年   879篇
  2007年   1231篇
  2006年   4篇
  2005年   25篇
  2004年   42篇
  2003年   64篇
  2002年   99篇
  2001年   18篇
  2000年   13篇
  1999年   3篇
  1998年   9篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1984年   12篇
  1983年   8篇
  1935年   2篇
排序方式: 共有9747条查询结果,搜索用时 0 毫秒
31.
32.
Humans’ superiority over all other organisms on earth rests on five main foundations: command of fire requiring fuel; controlled production of food and other biotic substances; utilization of metals and other non-living materials for construction and appliances; technically determined, urban-oriented living standard; economically and culturally regulated societal organization. The young discipline of ecology has revealed that the progress of civilization and technology attained, and being further pursued by humankind, and generally taken for granted and permanent, is leading into ecological traps. This metaphor circumscribes ecological situations where finite resources are being exhausted or rendered non-utilizable without a realistic prospect of restitution. Energy, food and land are the principal, closely interrelated traps; but the absolutely decisive resource in question is land whose increasing scarcity is totally underrated. Land is needed for fulfilling growing food demands, for producing renewable energy in the post-fossil and post-nuclear era, for maintaining other ecosystem services, for urban-industrial uses, transport, material extraction, refuse deposition, but also for leisure, recreation, and nature conservation. All these needs compete for land, food and non-food biomass production moreover for good soils that are scarcer than ever. We are preoccupied with fighting climate change and loss of biodiversity; but these are minor problems we could adapt to, albeit painfully, and their solution will fail if we are caught in the interrelated traps of energy, food, and land scarcity. Land and soils, finite and irreproducible resources, are the key issues we have to devote our work to, based on careful ecological information, planning and design for proper uses and purposes. The article concludes with a short reflection on economy and competition as general driving forces, and on the role and reputation of today’s ecology. Updated version of the keynote lecture presented at the EcoSummit 2007 in Beijing, China, May 24. The article is gratefully dedicated to the memory of my late colleague and friend Frank B. Golley.  相似文献   
33.
The biodegradability, morphology, and mechanical properties of composite materials made of Poly(butylene adipate-co-terephthalate) (PBAT) and sisal fiber (SF) were evaluated. Composites containing acrylic acid-grafted PBAT (PBAT-g-AA/SF) exhibited noticeably superior mechanical properties due to greater compatibility between the two components. The dispersion of SF in the PBAT-g-AA matrix was highly homogeneous as a result of ester formation between the carboxyl groups of PBAT-g-AA and hydroxyl groups in SF and the consequent creation of branched and cross-linked macromolecules. Each composite was subjected to biodegradation tests in Rhizopus oryzae compost. Morphological observations indicated severe disruption of film structure after 60 days of incubation, and both the PBAT and the PBAT-g-AA/SF composite films were eventually completely degraded. Water resistance of PBAT-g-AA/SF was higher than that of PBAT/SF, although weight loss of composites buried in Rhizopus oryzae compost indicated that both were biodegradable, even at high levels of SF substitution. The PBAT-g-AA/SF films were more biodegradable than those made of PBAT, implying a strong connection between these characteristics and biodegradability.  相似文献   
34.
In this study, the influence of alkali (NaOH) treatment on the mechanical, thermal and morphological properties of eco-composites of short flax fiber/poly(lactic acid) (PLA) was investigated. SEM analysis conducted on alkali treated flax fibers showed that the packed structure of the fibrils was deformed by the removal non-cellulosic materials. The fibrils were separated from each other and the surface roughness of the alkali treated flax fibers was improved. The mechanical tests indicated that the modulus of the untreated fiber/PLA composites was higher than that of PLA; on the other hand the modulus of alkali treated flax fiber/PLA was lower than PLA. Thermal properties of the PLA in the treated flax fiber composites were also affected. Tg values of treated flax fiber composites were lowered by nearly 10 °C for 10% NaOH treatment and 15 °C for 30% NaOH treatment. A bimodal melting behavior was observed for treated fiber composites different than both of neat PLA and untreated fiber composites. Furthermore, wide angle X-ray diffraction analysis showed that the crystalline structure of cellulose of flax fibers changed from cellulose-I structure to cellulose-II.  相似文献   
35.
36.
Lead from spent ammunition causes preventable lead exposure in wildlife and humans that may ingest it. Nontoxic substitutes for lead ammunition exist but are not adopted widely because of hunter opposition. Other forms of lead exposure in the human environment have been heavily regulated because there is no safe level of exposure. The use of lead ammunition should be regulated similarly to protect wildlife from this common disease.  相似文献   
37.
Hospital wastes are infectious wastes generated in hospitals and need to be disposed in such a way that they do not spread disease. In this experiment, 5, 10, 15 and 20% cow manure (CM) were mixed with hospital wastes (HW), and mixed wastes were subjected to vermicomposting. In control treatment, only HW was used for vermicomposting. Results suggested that significantly (P ≤ 0.05) higher total nitrogen content was recorded in vermicomposts when 10% or more CM was added to HW. Higher mineralization rate (decrease in C/N ratio) and cellulase activity is probably responsible for rapid organic matter decomposition (loss of total organic carbon). Ergosterol content i.e., total fungal biomass and cellulolytic fungal population were almost constant initially, but increased in the latter stage of vermicomposting. All the vermicompost samples, prepared in this experiment, showed the absence of coliform bacteria. Therefore, it could be concluded that 10% CM addition with HW was the most economical to obtain best quality vermicompost in terms of nutrient content and microbial status.  相似文献   
38.
Scientific and technological researches are devoted to obtain materials capable of retaining different kinds of pollutants, contributing to contamination solutions. In this context, hydrogels have emerged as great candidates because of their excellent absorption properties as well as good mechanical, thermal and chemical properties. More specifically, ferrogels (magnetic gels) present the extra advantage of being easily manipulated by a permanent magnet. Here, we present the results derived from the application of ferrogels as efficient tools to extract heavy metal pollutants from wastewater samples. The gels were prepared following the method of freezing and thawing of a polyvinyl alcohol aqueous solution with magnetic nanoparticles coated with polyacrylic acid. Ferrogels were fully characterized and their ability to retain Cu2+ and Cd2+, as model heavy metals, was studied. Thus kinetics and mechanisms of adsorption were evaluated and modeled. The concentration of MNPs on the PVA matrix was key to improve the adsorption capability (approximately the double of retention is improved by the MNPs addition). The adsorption kinetics was determined as pseudo-second order model, whereas the Langmuir model was the most appropriate to explain the behavior of the gels. Finally reuse ability was evaluated to determine the real potential of these materials, the ferrogels demonstrated high efficiency up to about five cycles, retaining about 80–90% of their initial adsorption capability. All the results indicated that the materials are promising candidates able to compete with the commercial technology regarding to water remediation.  相似文献   
39.
In accelerated weathering tests, specimens are exposed to higher radiation intensity, temperature and humidity than is likely under natural weathering in order to achieve rapid degradation of the polymer in a convenient short time. In the current work, a correlation between the two environments is attempted so that a prediction of lifetimes in the natural environment can be achieved. During aging, surface flaws are created due to the chain scission process. This is initiated by the absorption of ultra-violet light and directly affects visual appearance and impact strength. After natural weathering, the material shows only plastic deformation in an impact test. However, after artificial weathering to 5000 h of UV exposure, there is a decrease of 85% in impact strength. Colour change occurs at a high rate in the early stages of UV exposure. Beyond 2000 h of exposure, the colour change approaches a steady state and a correlation between the changes under natural and artificial weathering becomes apparent for a potential prediction of lifetimes. From the analysis including the specular component (SCI), taking surface roughening into account, 1 year under natural weathering was found to be equivalent to 25 days under accelerated weathering.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号