首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11492篇
  免费   3篇
  国内免费   18篇
安全科学   10篇
废物处理   893篇
环保管理   1367篇
综合类   1066篇
基础理论   3648篇
环境理论   3篇
污染及防治   1878篇
评价与监测   1119篇
社会与环境   1527篇
灾害及防治   2篇
  2023年   19篇
  2022年   58篇
  2021年   28篇
  2020年   8篇
  2019年   14篇
  2018年   1623篇
  2017年   1528篇
  2016年   1292篇
  2015年   141篇
  2014年   31篇
  2013年   33篇
  2012年   507篇
  2011年   1498篇
  2010年   861篇
  2009年   729篇
  2008年   1064篇
  2007年   1476篇
  2006年   8篇
  2005年   100篇
  2004年   51篇
  2003年   147篇
  2002年   188篇
  2001年   22篇
  2000年   17篇
  1999年   7篇
  1998年   26篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1991年   2篇
  1985年   1篇
  1984年   18篇
  1983年   9篇
  1963年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or batch wise by ships, trucks, railway or airplanes. All batch transportation requires a storage system but also pipelines can be used as pressure storage system. Hydrogen exhibits the highest heating value per weight of all chemical fuels. Furthermore, hydrogen is regenerative and environment friendly. There are two reasons why hydrogen is not the major fuel of toady’s energy consumption: First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water. This implies that we have to pay for this energy, which results in a difficult economic task, because since the industrialization we are used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is the low critical temperature of 33 K, i.e. hydrogen is a gas at room temperature. For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage system is crucial. Hydrogen can be stored by six different methods and phenomena: high pressure gas cylinders (up to 800 bar), liquid hydrogen in cryogenic tanks (at 21 K), adsorbed hydrogen on materials with a large specific surface area (at T < 100 K), absorbed on interstitial sites in a host metal (at ambient pressure and temperature), chemically bond in covalent and ionic compounds (at ambient pressure), oxidation of reactive metals e.g. Li, Na, Mg, Al, Zn with water. These metals easily react with water to the corresponding hydroxide and liberate the hydrogen from the water. Finally, the metal hydroxides can be thermally reduced to the metals in a solar furnace.  相似文献   
52.
The reestablisment of autochthonous plant species is an essential strategy for recovering degraded areas under semiarid conditions. A field experiment was carried out to assess the short-term effect of two reafforestation methods involving mycorrhizal inoculation and compost addition on soil quality parameters and Rhamnus lycioides seedling growth. The nutrient content (NPK) and enzymatic activities (dehydrogenase, urease, protease-BAA, acid phosphatase and β-glucosidase) increased and bulk density decreased in the rhizosphere soil with the organic amendment. Biomass C of rhizosphere soil increased by at least 240% with respect to the control soil after mycorrhizal inoculation and the combination of compost addition + mycorrhizal inoculation. Both mycorrhizal inoculation and composted organic residue addition increased R. lycioides seedling growth in the same proportion. In the short term, we conclude that the application of both reafforestation methods not only enhances the establishment of R. lycioides seedlings, but also improves soil quality.  相似文献   
53.
A hydrodynamic–oyster population model was developed to assess the effect of changes in freshwater inflow on oyster populations in Galveston Bay, Texas, USA. The population model includes the effects of environmental conditions, predators, and the oyster parasite, Perkinsus marinus, on oyster populations. The hydrodynamic model includes the effects of wind stress, river runoff, tides, and oceanic exchange on the circulation of the bay. Simulations were run for low, mean, and high freshwater inflow conditions under the present (1993) hydrology and predicted hydrologies for 2024 and 2049 that include both changes in total freshwater inflow and diversions of freshwater from one primary drainage basin to another. Freshwater diversion to supply the Houston metropolitan area is predicted to negatively impact oyster production in Galveston Bay. Fecundity and larval survivorship both decline. Mortality from Perkinsus marinus increases, but to a lesser extent. A larger negative impact in 2049 relative to 2024 originates from the larger drop in fecundity under that hydrology. Changes in recruitment and mortality, resulting in lowered oyster abundance, occur because the bay volume available for mixing freshwater input from the San Jacinto and Buffalo Bayou drainage basins that drain metropolitan Houston is small in comparison to the volume of Trinity Bay that presently receives the bulk of the bay's freshwater inflow. A smaller volume for mixing results in salinities that decline more rapidly and to a greater extent under conditions of high freshwater discharge. Thus, the decline in oyster abundance results from a disequilibrium between geography and salinity brought about by freshwater diversion. Although the bay hydrology shifts, available hard substrate does not. The simulations stress the fact that it is not just the well-appreciated reduction in freshwater inflow that can result in decreased oyster production. Changing the location of freshwater inflow can also significantly impact the bay environment, even if the total amount of freshwater inflow does not change.  相似文献   
54.
 The effect of the soil solids concentration in batch tests on the measured values of the partition coefficient (K p) of organic pollutants in landfill liner-soil material was investigated. Since this study was based on the results of batch and column tests conducted independently, there were limitations to the conclusions derived. The organic compounds tested were benzene, methylene chloride, toluene, trichloroethylene, and p-xylene. The results of this study showed that as soil solids concentrations increased, the measured K p values of these organic compounds strongly decreased. The observed values of K p stabilized when the soil solids concentration was above a certain value. Typical K p values obtained from batch tests conducted under high soil solids concentrations were close to those obtained from column tests. It was concluded that the K p values of organic compounds measured under low soil solids concentrations, i.e., less than 100 g/l, may not correctly simulate the field situation. Consequently, the values of K p obtained with low soil solids concentrations can result in an overestimation of the retardation factor of the landfill liner material. Received: March 14, 2002 / Accepted: August 25, 2002  相似文献   
55.
 This paper deals with the present scenario of hazardous waste management practices in Thailand, and gives some insights into future prospects. Industrialization in Thailand has systematically increased the generation of hazardous waste. The total hazardous waste generated in 2001 was 1.65 million tons. It is estimated that over 300 million kg/year of hazardous waste is generated from nonindustrial, community sources (e.g., batteries, fluorescent lamps, cleansing chemicals, pesticides). No special facilities are available for handling these wastes. There are neither well-established systems for separation, storage, collection, and transportation, nor the effective enforcement of regulations related to hazardous wastes management generated from industrial or nonindustrial sectors. Therefore, because of a lack of treatment and disposal facilities, these wastes find their way into municipal wastewaters, public landfills, nearby dump sites, or waterways, raising serious environmental concern. Furthermore, Thailand does not have an integrated regulatory framework regarding the monitoring and management of hazardous materials and wastes. In addition to the absence of a national definition of hazardous wastes, limited funding has caused significant impediments to the effective management of hazardous waste. Thus, current waste management practices in Thailand present significant potential hazards to humans and the environment. The challenging issues of hazardous waste management in Thailand are not only related to a scarcity of financial resources (required for treatment and disposal facilities), but also to the fact that there has been no development of appropriate technology following the principles of waste minimization and sustainable development. A holistic approach to achieving effective hazardous waste management that integrates the efforts of all sectors, government, private, and community, is needed for the betterment of human health and the environment. Received: February 26, 2001 / Accepted: October 11, 2002  相似文献   
56.
Bangladesh is a very flat delta built up by the Ganges—Brahmaputra—Meghna/Barak river systems. Because of its geographical location, floods cause huge destruction of lives and properties almost every year. Water control programs have been undertaken to enhance development through mitigating the threat of disasters. This structural approach to flood hazard has severely affected floodplain fisheries that supply the major share of protein to rural Bangladesh, as exemplified by the Chandpur Irrigation Project. Although the regulated environment of the Chandpur project has become favorable for closed-water cultured fish farming, the natural open-water fishery loss has been substantial. Results from research show that fish yields were better under preproject conditions. Under project conditions per capita fish consumption has dropped significantly, and the price of fish has risen beyond the means of the poor people, so that fish protein in the diet of poor people is gradually declining. Bangladesh is planning to expand water control facilities to the remaining flood-prone areas in the next 15–20 years. This will cause further loss of floodplain fisheries. If prices for closed-water fish remain beyond the buying power of the poor, alternative sources of cheap protein will be required.  相似文献   
57.
58.
Summary The balance of evidence suggests a perceptible human influence on global ecosystems. Human activities are affecting the global ecosystem, some directly and some indirectly. If researchers could clarify the extent to which specific human activities affect global ecosystems, they would be in a much better position to suggest strategies for mitigating against the worst disturbances. Sophisticated statistical analysis can help in interpreting the influence of specific human activities on global ecosystems more carefully. This study aims at identifying significant or influential human activities (i.e. factors) on CO2 emissions using statistical analyses. The study was conducted for two cases: (i) developed countries and (ii) developing countries. In developed countries, this study identified three influential human activities for CO2 emissions: (i) combustion of fossil fuels, (ii) population pressure on natural and terrestrial ecosystems, and (iii) land use change. In developing countries, the significant human activities causing an upsurge of CO2 emissions are: (i) combustion of fossil fuels, (ii) terrestrial ecosystem strength and (iii) land use change. Among these factors, combustion of fossil fuels is the most influential human activity for CO2 emissions both in developed and developing countries. Regression analysis based on the factor scores indicated that combustion of fossil fuels has significant positive influence on CO2 emissions in both developed and developing countries. Terrestrial ecosystem strength has a significant negative influence on CO2 emissions. Land use change and CO2 emissions are positively related, although regression analysis showed that the influence of land use change on CO2 emissions was still insignificant. It is anticipated, from the findings of this study, that CO2 emissions can be reduced by reducing fossil-fuel consumption and switching to alternative energy sources, preserving exiting forests, planting trees on abandoned and degraded forest lands, or by planting trees by social/agroforestry on agricultural lands.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号