首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
安全科学   1篇
废物处理   6篇
环保管理   3篇
综合类   1篇
基础理论   3篇
污染及防治   33篇
评价与监测   4篇
社会与环境   6篇
  2022年   5篇
  2021年   5篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   10篇
  2011年   8篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2006年   7篇
  2004年   1篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
51.
Nuclear magnetic resonance (NMR) - based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms.  相似文献   
52.
In this study, for the first time, levels and accumulation profiles of eight currently available polybrominated/chlorinated biphenyl congeners (PXBs; XB-77, -105, -118, -126A, -126B, -126C, -156 and -169, named according to IUPAC nomenclature) in human breast milk collected form Spanish women in 2005 were reported. Concentrations and congener specific profiles of polychlorinated biphenyls (PCBs), including co-planar PCBs, (co-PCBs) and polybrominated diphenyl ethers (PBDEs) were also reported.A concentration of 0.45 pg g−1 lipid weight was found for total PXBs, and arithmetic mean concentrations of 125, 25 and 5.5 ng g−1 lipid weight were determined for total PCBs, co-PCBs and total PBDEs respectively. Detectable levels of all congeners investigated, except CB-123 and XB-169 were found. Levels of PCBs were similar to those found in Spanish samples collected after 2000, and lower than those obtained before 2000. CB-138, -153 and -180 were the predominant PCB congeners. PBDE levels, dominated by BDE-47, -99, -100 and -209, were lower than PCB levels. PXB concentrations were the lowest, with XB-156 being the most abundant. The concentration levels of PCBs and PBDEs found in this study were in the same range as those from other European countries. Levels of PXBs were much lower than published values determined in Japan which were the only data found in the literature.  相似文献   
53.
Several methods were developed to detect the cyclic volatile methylsiloxanes (cVMSs) including octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in water, sediment, soil, biota, and biosolid samples. Analytical techniques employed to optimize measurement of this compound class in various matrices included membrane-assisted solvent extraction in water, liquid–solid extraction for sediment, soil, biota, and biosolid samples. A subsequent analysis of the extract was conducted by large-volume injection–gas chromatography−mass spectrometry (LVI−GC−MS). These methods employed no evaporative techniques to avoid potential losses and contamination of the volatile siloxanes. To compensate for the inability to improve detection limits by concentrating final sample extract volumes we used a LVI–GC–MS. Contamination during analysis was minimized by using a septumless GC configuration to avoid cVMS’s associated with septum bleed. These methods performed well achieving good linearity, low limits of detection, good precision, recovery, and a wide dynamic range. In addition, stability of cVMS in water and sediment was assessed under various storage conditions. D4 and D5 in Type-I (Milli-Q) water stored at 4 °C were stable within 29 d; however, significant depletion of D6 (60–70%) occurred only after 3 d. Whereas cVMS in sewage influent and effluent were stable at 4 °C within 21 d. cVMS in sediment sealed in amber glass jars at −20 °C and in pentane extracts in vials at −15 °C were stable during 1 month under both storage conditions.  相似文献   
54.
A comprehensive surveillance program was conducted to determine the occurrence of three cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in environmental compartments impacted by wastewater effluent discharges. Eleven wastewater treatment plants (WWTPs), representative of those found in Southern Ontario and Southern Quebec, Canada, were investigated to determine levels of cVMS in their influents and effluents. In addition, receiving water and sediment impacted by WWTP effluents, and biosolid-amended soil from agricultural fields were also analyzed for a preliminary evaluation of the environmental exposure of cVMS in media impacted by wastewater effluent and solids. A newly-developed large volume injection (septumless head adapter and cooled injection system) gas chromatography – mass spectrometry method was used to avoid contamination originating from instrumental analysis. Concentrations of D4, D5, and D6 in influents to the 11 WWTPs were in the range 0.282–6.69 μg L−1, 7.75–135 μg L−1, and 1.53–26.9 μg L−1, respectively. In general, wastewater treatment showed cVMS removal rates of greater than 92%, regardless of treatment type. The D4, D5, and D6 concentration ranges in effluent were <0.009–0.045 μg L−1, <0.027–1.56 μg L−1, and <0.022–0.093 μg L−1, respectively. The concentrations in receiving water influenced by effluent, were lower compared to those in effluent in most cases, with the ranges <0.009–0.023 μg L−1, <0.027–1.48 μg L−1, and <0.022–0.151 μg L−1 for D4, D5, and D6, respectively. Sediment concentrations ranged from <0.003–0.049 μg g−1 dw, 0.011–5.84 μg g−1 dw, and 0.004–0.371 μg g−1 dw for D4, D5, and D6, respectively. The concentrations in biosolid-amended soil, having values of <0.008–0.017 μg g−1 dw, <0.007–0.221 μg g−1 dw, and <0.009–0.711 μg g−1 dw for D4, D5, and D6, respectively, were lower than those in sediment impacted by wastewater effluent in most cases. In comparison with the no-observed-effected concentrations (NOEC) and IC50 (concentration that causes 50% inhibition of the response) values, the potential risks to aquatic, sediment-dwelling, and terrestrial organisms from these reported concentrations are low.  相似文献   
55.
Carbon dioxide sequestration in deep saline aquifers is a means of reducing anthropogenic atmospheric emissions of CO2. Among various mechanisms, CO2 can be trapped in saline aquifers by dissolution in the formation water. Vaporization of water occurs along with the dissolution of CO2. Vaporization can cause salt precipitation, which reduces porosity and impairs permeability of the reservoir in the vicinity of the wellbore, and can lead to reduction in injectivity. The amount of salt precipitation and the region in which it occurs may be important in CO2 storage operations if salt precipitation significantly reduces injectivity. Here we develop an analytical model, as a simple and efficient tool to predict the amount of salt precipitation over time and space. This model is particularly useful at high injection velocities, when viscous forces dominate.First, we develop a model which treats the vaporization of water and dissolution of CO2 in radial geometry. Next, the model is used to predict salt precipitation. The combined model is then extended to evaluate the effect of salt precipitation on permeability in terms of a time-dependent skin factor. Finally, the analytical model is corroborated by application to a specific problem with an available numerical solution, where a close agreement between the solutions is observed. We use the results to examine the effect of assumptions and approximations made in the development of the analytical solution. For cases studied, salt saturation was a few percent. The loss in injectivity depends on the degree of reduction of formation permeability with increased salt saturation. For permeability-reduction models considered in this work, the loss in injectivity was not severe. However, one limitation of the model is that it neglects capillary and gravity forces, and these forces might increase salt precipitation at the bottom of formation particularly when injection rate is low.  相似文献   
56.
Environmental Science and Pollution Research - This research studied the modeling of malachite green (MG) adsorption onto novel polyurethane/SrFe12O19/clinoptilolite (PU/SrM/CLP) nanocomposite from...  相似文献   
57.
Environmental Chemistry Letters - Worldwide contamination of waters by metals, metalloids, and organometallic pollutants is a major health issue. In particular, the occurrence of the selenium...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号