首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21671篇
  免费   662篇
  国内免费   125篇
安全科学   840篇
废物处理   887篇
环保管理   3435篇
综合类   3791篇
基础理论   5425篇
环境理论   10篇
污染及防治   5461篇
评价与监测   1274篇
社会与环境   1171篇
灾害及防治   164篇
  2023年   175篇
  2022年   243篇
  2021年   268篇
  2020年   270篇
  2019年   277篇
  2018年   362篇
  2017年   382篇
  2016年   548篇
  2015年   448篇
  2014年   577篇
  2013年   1721篇
  2012年   785篇
  2011年   1106篇
  2010年   832篇
  2009年   951篇
  2008年   1021篇
  2007年   1061篇
  2006年   911篇
  2005年   764篇
  2004年   762篇
  2003年   694篇
  2002年   667篇
  2001年   740篇
  2000年   585篇
  1999年   379篇
  1998年   264篇
  1997年   292篇
  1996年   268篇
  1995年   321篇
  1994年   269篇
  1993年   258篇
  1992年   211篇
  1991年   215篇
  1990年   205篇
  1989年   206篇
  1988年   172篇
  1987年   149篇
  1986年   172篇
  1985年   165篇
  1984年   207篇
  1983年   175篇
  1982年   189篇
  1981年   189篇
  1980年   145篇
  1979年   164篇
  1978年   108篇
  1977年   101篇
  1975年   92篇
  1974年   95篇
  1972年   102篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
651.
Impacts of human land use pose an increasing threat to global biodiversity. Resource managers must respond rapidly to this threat by assessing existing natural areas and prioritizing conservation actions across multiple spatial scales. Plant species richness is a useful measure of biodiversity but typically can only be evaluated on small portions of a given landscape. Modeling relationships between spatial heterogeneity and species richness may allow conservation planners to make predictions of species richness patterns within unsampled areas. We utilized a combination of field data, remotely sensed data, and landscape pattern metrics to develop models of native and exotic plant species richness at two spatial extents (60- and 120-m windows) and at four ecological levels for northwestern Ohio’s Oak Openings region. Multiple regression models explained 37–77 % of the variation in plant species richness. These models consistently explained more variation in exotic richness than in native richness. Exotic richness was better explained at the 120-m extent while native richness was better explained at the 60-m extent. Land cover composition of the surrounding landscape was an important component of all models. We found that percentage of human-modified land cover (negatively correlated with native richness and positively correlated with exotic richness) was a particularly useful predictor of plant species richness and that human-caused disturbances exert a strong influence on species richness patterns within a mixed-disturbance oak savanna landscape. Our results emphasize the importance of using a multi-scale approach to examine the complex relationships between spatial heterogeneity and plant species richness.  相似文献   
652.
Biotechnology increases commercialization of food production, which competes with food for home use. Most people in the world grow their own food, and are more secure without the mediation of the market. To the extent that biotechnology enhances market competitiveness, world food security will decrease. This instability will result in a greater gap between rich and poor, increasing poverty of women and children, less ability and incentive to protect the environment, and greater need for militarization to maintain order. Therefore, biotechnology should be discouraged. An active program to protect and strengthen local food production and to decrease reliance on industrial agriculture should be promoted.  相似文献   
653.
    
ABSTRACT: This paper illustrates a method of using a hydrologic/water quality model to analyze alternative management practices and recommend best management practices (BMPs) to reduce nitrate-nitrogen (NO3--N) leaching losses. The study area for this research is Tipton, an agriculturally intensive area in southwest Oklahoma. We used Erosion Productivity Impact Calculator (EPIC), a field-scale hydrologic/water quality model, to analyze alternative agricultural management practices. The model was first validated using observed data from a cotton demonstration experiment conducted in the Tipton area. Following that, EPIC was used to simulate fertilizer response curves for cotton and wheat crops under irrigated and dryland conditions. From the fertilizer response functions (N-uptake and N-leaching), we established an optimum fertilizer application rate for each crop. Individual crop performances were then simulated at optimum fertilizer application rates and crop rotations for the Tipton area, which were selected based on three criteria: (a) minimum amount of NO3--N leached, (b) minimum concentration of NO3--N leached, and (c) maximum utilization of NO3--M. Further we illustrate that by considering residual N from alfalfa as a credit to the following crop and crediting NO3--N present in the irrigation water, it is possible to reduce further NO3--N loss without affecting crop yield.  相似文献   
654.
    
Iron oxides are important components influencing the adsorption of various inorganic and organic compounds in soils and sediments. In this study the adsorption on iron oxides of nonionic and ionic pesticides was determined as a function of solution pH, ionic strength, and pesticide concentration. The investigated iron oxides included two-line ferrihydrite, goethite, and lepidocrocite. Selected pesticides comprised atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea)], mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid], 2,4-D (2,4-dichlorophenoxyacetic acid), and bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. The adsorption of the nonionic pesticides (atrazine and isoproturon) was insignificant, whereas the adsorption of the acidic pesticides (mecoprop, 2,4-D, and bentazone) was significant on all investigated iron oxides. The adsorption capacity increased with decreasing pH, with maximum adsorption reached close to the pKa values. The addition of CaCl2 in concentrations from 0.0025 to 0.01 M caused the adsorption capacity to diminish. The adsorption of bentazone was significantly lower than the adsorption of mecoprop and 2,4-D, illustrating the importance of a carboxyl group in the pesticide structure. The adsorption capacity on the iron oxides increased in the order: lepidocrocite < goethite < two-line ferrihydrite. The maximum adsorption capacities of meco-prop and 2,4-D on goethite were found to be equivalent to the site density of singly coordinated hydroxyl groups on the faces of the dominant (110) form, suggesting that singly coordinated hydroxyl groups are responsible for adsorption. Differences in adsorption capacities between iron oxides can be explained by differences in the surface site density of singly coordinated hydroxyl groups. The maximum measured adsorption capacity of mecoprop on two-line ferrihydrite was equivalent to 0.2 mol/mol Fe.  相似文献   
655.
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies.  相似文献   
656.
Environmental degradation, competition for resources, increasing food demands, and the integration of agriculture into the international economy threaten the sustainability of many food production systems. Despite these concerns, the concept of sustainable food production systems remains unclear, and recent attempts to appraise sustainability have been hampered by conceptual inconsistencies and the absence of workable definitions. Six perspectives are shown to underpin the concept. Environmental accounting identifies biophysical limits for agriculture. Sustained yield refers to output levels that can be maintained continuously. Carrying capacity defines maximum population levels that can be supported in perpetuity. Production unit viability refers to the capacity of primary producers to remain in agriculture. Product supply and security focuses on the adequacy of food supplies. Equity is concerned with the spatial and temporal distribution of products dervied from resource use. Many studies into sustainable agriculture cover more than one of these perspectives, indicating the concept is complex and embraces issues relating to the biophysical, social, and economic environments. Clarification of the concept would facilitate the development of frameworks and analytical systems for appraising the sustainability of food production systems. LRRC Contribution No. 90–46.  相似文献   
657.
Trace element speciation in poultry litter   总被引:8,自引:0,他引:8  
Trace elements are added to poultry feed for disease prevention and enhanced feed efficiency. High concentrations are found in poultry litter (PL), which raises concerns regarding trace element loading of soils. Trace metal cation solubility from PL may be enhanced by complexation with dissolved organic carbon (DOC). Mineralization of organo-As compounds may result in more toxic species such as As(III) and As(V). Speciation of these elements in PL leachates should assist in predicting their fate in soil. Elemental concentrations of 40 PL samples from the southeastern USA were determined. Water-soluble extractions (WSE) were fractionated into hydrophobic, anionic, and cationic species with solid-phase extraction columns. Arsenic speciation of seven As species, including the main As poultry feed additives, roxarsone (ROX; 3-nitro-4-hydroxyphenylarsonic acid) and p-arsanilic acid (p-ASA; 4-aminophenylarsonic acid), was performed by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Total As concentrations in the litter varied from 1 to 39 mg kg(-1), averaging 16 mg kg(-1). Mean total Cu, Ni, and Zn concentrations were 479, 11, and 373 mg kg(-1), respectively. Copper and Ni were relatively soluble (49 and 41% respectively) while only 6% of Zn was soluble. Arsenic was highly soluble with an average of 71% WSE. Roxarsone was the major As species in 50% of PL samples. However, the presence of As(V) as the major species in 50% of the PL samples indicates that mineralization of ROX had occurred. The high solubility of As from litter and its apparent ready mineralization to inorganic forms coupled with the large quantity of litter that is annually land-applied in the USA suggests a potential detrimental effect on soil and water quality in the long term.  相似文献   
658.
Repeated application may increase rates of pesticide dissipation in soil and reduce persistence. The potential for this to occur was investigated for the fungicide, tebuconazole (alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), when used for peanut (Arachis hypogaea L.) production. Soil samples were collected from peanut plots after each of four tebuconazole applications at 2-wk intervals. Soil moisture was adjusted to field capacity as necessary and samples were incubated in the laboratory for 63 d at 30 degrees C. Untreated plot samples spiked with the compound served as controls. Results indicated accelerated dissipation in field-treated samples with the time to fifty percent dissipation (DT50) decreasing from 43 to 5 d after three tebuconazole applications. Corresponding increases in rates of accumulation and decay of degradates were also indicated. Best-fit equations (r2 = 0.84-0.98) to dissipation kinetic data combined with estimates of canopy interception rates were used to predict tebuconazole and degradates concentration in soil after each successive application. Predicted concentrations compared with values measured in surface soil samples were from twofold less to twofold greater. Use of kinetic data will likely enhance assessments of treatment efficacy and human and ecological risks from normal agronomic use of tebuconazole on peanut. However, the study indicated that varying soil conditions (in particular, soil temperature and water content) may have an equal or greater impact on field dissipation rate than development of accelerated dissipation. Results emphasize that extension of laboratory-derived kinetic data to field settings should be done with caution.  相似文献   
659.
    
ABSTRACT: Control of stormwater runoff from impervious surfaces is an important national goal because of disruptions to downstream ecosystems, water users, and property owners caused by increased flows and degraded quality. One method for reducing stormwater is the use of vegetated (green) roofs, which efficiently detain and retain stormwater when compared to conventional (black) roofs. A paired green roof‐black roof test plot was constructed at the University of Georgia and monitored between November 2003 and November 2004 for the green roof's effectiveness in reducing stormwater flows. Stormwater mitigation performance was monitored for 31 precipitation events, which ranged in depth from 0.28 to 8.43 cm. Green roof precipitation retention decreased with precipitation depth; ranging from just under 90 percent for small storms (< 2.54 cm) to slightly less than 50 percent for larger storms (> 7.62 cm). Runoff from the green roof was delayed; average runoff lag times increased from 17.0 minutes for the black roof to 34.9 minutes for the green roof, an average increase of 17.9 minutes. Precipitation and runoff data were used to estimate the green roof curve number, CN = 86. This information can be used in hydrologic models for developing stormwater mitigation programs.  相似文献   
660.
The introduction of potentially invasive species is a concern to the public and the aquaculture industry. Used to protect channel catfish from infectious trematode infestations, the non-indigenous black carp has been evaluated by the US Fish and Wildlife Service (USFWS) and deemed potentially ‘injurious’ under the terms of the Lacey Act. Consequently, the black carp may be restricted from interstate commerce and eventually removed from US waters. An alternative approach to evaluating the risks posed by invasive species is considered and compared to that used by the USFWS. Short of outright restriction, reasonable options for management of such invasive species probably exist, including better use of environmental assurance bonds and return-deposit models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号