首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21111篇
  免费   359篇
  国内免费   432篇
安全科学   839篇
废物处理   887篇
环保管理   3316篇
综合类   3446篇
基础理论   5354篇
环境理论   10篇
污染及防治   5449篇
评价与监测   1268篇
社会与环境   1171篇
灾害及防治   162篇
  2023年   118篇
  2022年   209篇
  2021年   209篇
  2020年   238篇
  2019年   214篇
  2018年   359篇
  2017年   379篇
  2016年   536篇
  2015年   437篇
  2014年   567篇
  2013年   1712篇
  2012年   772篇
  2011年   1092篇
  2010年   830篇
  2009年   947篇
  2008年   1011篇
  2007年   1055篇
  2006年   906篇
  2005年   752篇
  2004年   757篇
  2003年   686篇
  2002年   660篇
  2001年   730篇
  2000年   579篇
  1999年   370篇
  1998年   255篇
  1997年   285篇
  1996年   263篇
  1995年   313篇
  1994年   263篇
  1993年   256篇
  1992年   209篇
  1991年   210篇
  1990年   203篇
  1989年   206篇
  1988年   172篇
  1987年   148篇
  1986年   172篇
  1985年   165篇
  1984年   207篇
  1983年   175篇
  1982年   189篇
  1981年   189篇
  1980年   145篇
  1979年   164篇
  1978年   108篇
  1977年   101篇
  1975年   92篇
  1974年   95篇
  1972年   102篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Many species of conservation concern are spatially structured and require dispersal to be persistent. For such species, altering the distribution of suitable habitats on the landscape can affect population dynamics in ways that are difficult to predict from simple models. We argue that for such species, individual-based and spatially explicit population models (SEPMs) should be used to determine appropriate levels of off-site restoration to compensate for on-site loss of ecologic resources. Such approaches are necessary when interactions between biologic processes occur at different spatial scales (i.e., local [recruitment] and landscape [migration]). The sites of restoration and habitat loss may be linked to each other, but, more importantly, they may be linked to other resources in the landscape by regional biologic processes, primarily migration. The common management approach for determining appropriate levels of off-site restoration is to derive mitigation ratios based on best professional judgment or pre-existing data. Mitigation ratios assume that the ecologic benefits at the site of restoration are independent of the ecologic costs at the site of habitat loss. Using an SEPM for endangered red-cockaded woodpeckers, we show that the spatial configuration of habitat restoration can simultaneously influence both the rate of recruitment within breeding groups and the rate of migration among groups, implying that simple mitigation ratios may be inadequate.  相似文献   
922.
Adsorption-desorption characteristics of mercury in paddy soils of China   总被引:1,自引:0,他引:1  
Mercury (Hg) has received considerable attention because of its association with various human health problems. Adsorption-desorption behavior of Hg at contaminated levels in two paddy soils was investigated. The two representative soils for rice production in China, locally referred to as a yellowish red soil (YRS) and silty loam soil (SLS) and classified as Gleyi-Stagnic Anthrosols in FAO/UNESCO nomenclature, were respectively collected from Jiaxin County and Xiasha District of Hangzhou City, Zhejiang Province. The YRS adsorbed more Hg(2+) than the SLS. The characteristics of Hg adsorption could be described by the simple Langmuir adsorption equation (r2 = 0.999 and 0.999, P < 0.01, respectively, for the SLS and YRS). The maximum adsorption values (Xm) that were obtained from the simple Langmuir model were 111 and 213 mg Hg(2+) kg(-1) soil, respectively, for the SLS and YRS. Adsorption of Hg(2+) decreased soil pH by 0.75 unit for the SLS soil and 0.91 unit for the YRS soil at the highest loading. The distribution coefficient (kd) of Hg in the soil decreased exponentially with increasing Hg(2+) loading. After five successive desorptions with 0.01 mol L(-1) KCl solution (pH 5.4), 0 to 24.4% of the total adsorbed Hg(2+) in the SLS soil was desorbed and the corresponding value of the YRS soil was 0 to 14.4%, indicating that the SLS soil had a lower affinity for Hg(2+) than the YRS soil at the same Hg(2+) loading. Different mechanisms are likely involved in Hg(2+) adsorption-desorption at different levels of Hg(2+) loading and between the two soils.  相似文献   
923.
Nitrogen application can have a significant effect on soil carbon (C) pools, plant biomass production, and microbial biomass C processing. The focus of this study was to investigate the short-term effect of N fertilization on soil CO(2) emission and microbial biomass C. The study was conducted from 2001 to 2003 at four field sites in Iowa representing major soil associations and with a corn (Zea mays L.)-soybean (Glycine max L. Merr.) rotation. The experimental design was a randomized complete block with four replications of four N rates (0, 90, 180, and 225 kg ha(-1)). In the corn year, season-long cumulative soil CO(2) emission was greatest with the zero N application. There was no effect of N applied in the prior year on CO(2) emission in the soybean year, except at one of three sites, where greater applied N decreased CO(2) emission. Soil microbial biomass C (MBC) and net mineralization in soil collected during the corn year was not significantly increased with increase in N rate in two out of three sites. At all sites, soil CO(2) emission from aerobically incubated soil showed a more consistent declining trend with increase in N rate than found in the field. Nitrogen fertilization of corn reduced the soil CO(2) emission rate and seasonal cumulative loss in two out of three sites, and increased MBC at only one site with the highest N rate. Nitrogen application resulted in a reduction of both emission rate and season-long cumulative emission of CO(2)-C from soil.  相似文献   
924.
Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time.  相似文献   
925.
A microplate method was developed as a tool to test phages for their ability to control Salmonella in aqueous environments. The method used EPA (U.S. Environmental Protection Agency) worst case water (WCW) in 96-well plates. The WCW provided a consistent and relatively simple defined turbid aqueous matrix, high in total organic carbon (TOC) and total dissolved salts (TDS), to simulate swine lagoon effluent, without the inconvenience of malodor and confounding effects from other biological factors. The WCW was originally defined to simulate high turbidity and organic matter in water for testing point-of-use filtration devices. Use of WCW to simulate lagoon effluent for phage testing is a new and innovative application of this matrix. Control of physical and chemical parameters (TOC, TDS, turbidity, temperature, and pH) allowed precise evaluation of microbiological parameters (Salmonella and phages). In a typical application, wells containing WCW were loaded with Salmonella enterica susp. enterica serovar Typhimurium (ATCC14028) and treated with phages alone and in cocktail combinations. Mean Salmonella inactivation rates (k, where the lower the value, the greater the inactivation) of phage treatments ranged from -0.32 to -1.60 versus -0.004 for Salmonella controls. Mean log(10) reductions (the lower the value, the greater the reduction) of Salmonella phage treatments were -1.60 for phage PR04-1, -2.14 for phage PR37-96, and -2.14 for both phages in a sequential cocktail, versus -0.08 for Salmonella controls. The WCW microcosm system was an effective tool for evaluating the biocontrol potential of Salmonella phages.  相似文献   
926.
The fly ash treated by H2SO4 was used as a low-cost adsorbent for the removal of a typical dye, methylene blue, from aqueous solution. An increase in the specific surface area and dye-adsorption capacity was observed after the acid treatment. The adsorption isotherm and kinetics of the treated fly ash were studied. The experimental results were fitted using Langmuir and Freundlich isotherms. It shows that the Freundlich isotherm is better in describing the adsorption process. Two kinetic models, pseudo-first order and pseudo-second order, were employed to analyze the kinetic data. It was found that the pseudo-second-order model is the better choice to describe the adsorption behavior. The thermodynamic study reveals that the enthalpy (ΔH0) value is positive (5.63 kJ/mol), suggesting an endothermic nature of the adsorption.  相似文献   
927.
Abstract: Lakes are important water resources on the North Slope of Alaska. Freshwater is required for oilfield production as well as exploration, which occurs largely on ice roads and pads. Since most North Slope lakes are shallow, the quantity and quality of the water under ice at the end of winter are important environmental management issues. Currently, water‐use permits are a function of the presence of overwintering fish populations, and their sensitivity to low oxygen concentrations. Sampling of five North Slope lakes during the winter of 2004‐2005 shed some light on the winter chemistry of four lakes that were used as water supplies and one undisturbed lake. Field analysis was conducted for oxygen, conductivity, pH, and temperature throughout the lake depth, as well as ice thickness and water depth. Water samples were retrieved from the lakes and analyzed for Na, Ca, K, Mg, Fe, dissolved‐organic carbon, and alkalinity in the laboratory. Lake properties, rather than pumping, were the best predictors of oxygen depletion, with the highest dissolved‐oxygen levels maintained in the lake with the lowest concentration of constituents. Volume weighted mean dissolved‐oxygen concentrations ranged from 4 to 94% of saturation in March. Dissolved oxygen and specific conductance data suggested that the lakes began to refresh in May.  相似文献   
928.
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1.  相似文献   
929.
Abstract: Remediation of waters impaired by bacterial indicators is usually dictated by total maximum daily load plans, which are heavily dependent on fate and transport modeling of bacterial indicators. Nonpoint source pollution models are most frequently used to assess bacterial transport to surface waters and most models typically simulate bacterial transport as a dissolved pollutant. Previous studies have found that cells preferentially attach to sediments; however, a variety of techniques have been used to assess attachment including filtration, fractional filtration, and centrifugation. In addition, a variety of chemical and physical dispersion techniques are used to release attached and bioflocculated cells from particulates. Here we developed and validated an easy‐to‐replicate laboratory procedure for separation of unattached from attached E. coli which will also identify particle sizes to which E. coli preferentially attach. Physical and chemical dispersion techniques were evaluated and a combined hand shaker treatment for 10 min followed by dilutions in 1,000 mg/l of Tween 85 significantly increased total E. coli concentrations by 31% when compared with a control. In order to separate unattached from attached fractions, two commonly used techniques, fractional filtration, and centrifugation were combined. The filtration and centrifugation treatments did not reduce E. coli concentrations when compared with a control (p > 0.05), indicating that damage was not inflicted upon the E. coli cells during the separation procedure.  相似文献   
930.
重金属检测方法研究综述   总被引:15,自引:0,他引:15  
重金属超标会造成环境污染,同时重金属在生物体内的积累效应会对人类的健康造成潜在地威胁.主要从应用新型的科技成果到结合生物技术对重金属的检测方法做一综述,以期为建立灵敏度更高、更准确、更快速的检测方法提供参考.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号