Large cooking oil pool fires, occurring in industrial oil cookers, present a severe hazard to food processing plants due to their size and the large amount of hot oil involved. This paper reports a series of full-scale fire experiments conducted in a large industrial oil cooker mock-up. The characteristics of large cooking oil pool fires and the effect of oil depth and hood position in the oil cooker on fire growth were studied. The use of water mist for extinguishing large oil pool fires and their extinguishing performance under different discharge pressure and with different types of water mist systems were investigated. Experimental results showed that the cooking oil underwent a substantial expansion in volume during heating. The fires developed quickly once the oil auto-ignited. The fire growth rate was affected by the oil depth in the pan and the hood position in the oil cooker. The water mist fire suppression systems effectively extinguished large cooking oil fires and prevented them from re-igniting. Their extinguishing performance was determined by the type of water mist system, discharge pressure and hood position in the oil cooker. 相似文献
This paper presents detailed data on the thermal response of two 500 gal ASME code propane tanks that were 25% engulfed in a hydrocarbon fire. These tests were done as part of an overall test programme to study thermal protection systems for propane-filled railway tank-cars.
The fire was generated using an array of 25 liquid propane-fuelled burners. This provided a luminous fire that engulfed 25% of the tank surface on one side. The intent of these tests was to model a severe partially engulfing fire situation.
The paper presents data on the tank wall and lading temperatures and tank internal pressure. In the first test the wind reduced the fire heating and resulted in a late failure of the tank at 46 min. This tank failed catastrophically with a powerful boiling liquid expanding vapour explosion (BLEVE). In the other test, the fire heating was very severe and steady and this tank failed very quickly in 8 min as a finite rupture with massive two-phase jet release. The reasons for these different outcomes are discussed. The different failures provide a range of realistic outcomes for the subject tank and fire condition. 相似文献
After Bhopal disaster, emergency planning in an industrial area has become inevitable. The off-site emergency plan is an integral part of any major hazard control system. Boiling Liquid Expanding Vapour Explosion (BLEVE) leads to fatal consequences. This paper highlights some salient features of the emergency scenario, which ultimately leads to fireball with enormous pressure wave all around. 相似文献
INTRODUCTION: Alcohol use, alcohol misuse, and risky driving from adolescence into young adulthood were compared by drinking onset age. METHODS: Surveys were administered in Grades 5/6, 6/7, 7/8, 10, 12, and at approximately age 23. Participants were placed into Drinking Onset groups based on self-reported alcohol use frequency on the adolescent surveys. Driving records were examined in three age periods: under 21, 21-25, and 26+. RESULTS: The earliest drinking initiators reported higher alcohol use and misuse on each survey, and were more likely to have risky driving offenses before age 21 and to have alcohol driving offenses in all three age periods. DISCUSSION: The earliest drinking initiators engaged in risky drinking behavior and risky driving behavior that was consistently higher than those with later drinking initiation, beginning in adolescence and persisting well into young adulthood. 相似文献
This paper describes the results from a series of fire tests that were carried out to measure the effect of defects in thermal protection systems on fire engulfed propane pressure vessels.
In North America thermal protection is used to protect dangerous goods rail tank-cars from accidental fire impingement. They are designed so that a tank-car will not rupture for 100 min in a defined engulfing fire, or 30 min in a defined torching fire. One common system includes a 13 mm blanket of high-temperature ceramic fibre thermal insulation covered with a 3 mm steel jacket. Recent inspections have shown that some tanks have significant defects in these thermal protection systems. This work was done to establish what levels of defect are acceptable from a safety standpoint.
The tests were conducted using 1890 l (500 US gallon) ASME code propane pressure vessels (commonly called tanks in the propane industry). The defects tested covered 8% and 15% of the tank surface. The tanks were 25% engulfed in a fire that simulated a hydrocarbon pool fire with an effective blackbody temperature of 870 °C.
The fire testing showed that even relatively small defects can result in tank rupture if the defect area is engulfed in a severe fire, and the defect area is not wetted by liquid from the inside. A wall failure prediction technique based on uniaxial high-temperature stress rupture test data has been developed and agrees well with the observed failure times. 相似文献