首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   727篇
  免费   3篇
  国内免费   24篇
安全科学   29篇
废物处理   69篇
环保管理   65篇
综合类   52篇
基础理论   124篇
污染及防治   298篇
评价与监测   56篇
社会与环境   56篇
灾害及防治   5篇
  2023年   40篇
  2022年   94篇
  2021年   78篇
  2020年   34篇
  2019年   28篇
  2018年   35篇
  2017年   40篇
  2016年   34篇
  2015年   21篇
  2014年   37篇
  2013年   57篇
  2012年   31篇
  2011年   26篇
  2010年   18篇
  2009年   35篇
  2008年   16篇
  2007年   19篇
  2006年   25篇
  2005年   16篇
  2004年   12篇
  2003年   6篇
  2002年   14篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1987年   2篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有754条查询结果,搜索用时 46 毫秒
41.
42.
To assess the status of polycyclic aromatic hydrocarbon (PAH) contamination in sediments from the Bizerte Lagoon (northern Tunisia), 18 surface sediment samples were collected in March 2011 and analyzed for 14 US Environmental Protection Agency priority PAHs by high-performance liquid chromatography. The total concentrations of the 14 PAHs (ΣPAHs) ranged from 16.9 to 394.1 ng g?1 dry weight (dw) with a mean concentration of 85.5 ng g?1 dw. Compared with other lagoons, coasts, and bays in the world, the concentrations of PAHs in surface sediments of the Bizerte Lagoon are low to moderate. The PAHs’ composition pattern was dominated by the presence of four-ring PAHs (45.8 %) followed by five-ring (26.8 %) and three-ring PAHs (12.7 %). The PAH source analysis suggested that the main origin of PAHs in the sediments of the lagoon was mainly from pyrolytic sources. According to the numerical effect-based sediment quality guidelines of the USA, the levels of PAHs in the Bizerte Lagoon should not exert adverse biological effects. The total benzo[a]pyrene toxicity equivalent values calculated for the samples varied from 3.1 to 53.7 ng g?1 dw with an average of 10.6 ng g?1 dw.  相似文献   
43.
44.
The quantitative assessment of health impacts has been identified as a crucial feature for realising the full potential of health impact assessment (HIA). In settings where demographic and health data are notoriously scarce, but there is a broad range of ascertainable ecological, environmental, epidemiological and socioeconomic information, a diverse toolkit of data collection strategies becomes relevant for the mainly small-area impacts of interest. We present a modular, cross-sectional baseline health survey study design, which has been developed for HIA of industrial development projects in the humid tropics. The modular nature of our toolkit allows our methodology to be readily adapted to the prevailing eco-epidemiological characteristics of a given project setting. Central to our design is a broad set of key performance indicators, covering a multiplicity of health outcomes and determinants at different levels and scales. We present experience and key findings from our modular baseline health survey methodology employed in 14 selected sentinel sites within an iron ore mining project in the Republic of Guinea. We argue that our methodology is a generic example of rapid evidence assembly in difficult-to-reach localities, where improvement of the predictive validity of the assessment and establishment of a benchmark for longitudinal monitoring of project impacts and mitigation efforts is needed.  相似文献   
45.
One hundred and thirty composite soil samples were collected from Hamedan county, Iran to characterize the spatial distribution and trace the sources of heavy metals including As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Fe. The multivariate gap statistical analysis was used; for interrelation of spatial patterns of pollution, the disjunctive kriging and geoenrichment factor (EFG) techniques were applied. Heavy metals and soil properties were grouped using agglomerative hierarchical clustering and gap statistic. Principal component analysis was used for identification of the source of metals in a set of data. Geostatistics was used for the geospatial data processing. Based on the comparison between the original data and background values of the ten metals, the disjunctive kriging and EFG techniques were used to quantify their geospatial patterns and assess the contamination levels of the heavy metals. The spatial distribution map combined with the statistical analysis showed that the main source of Cr, Co, Ni, Zn, Pb, and V in group A land use (agriculture, rocky, and urban) was geogenic; the origin of As, Cd, and Cu was industrial and agricultural activities (anthropogenic sources). In group B land use (rangeland and orchards), the origin of metals (Cr, Co, Ni, Zn, and V) was mainly controlled by natural factors and As, Cd, Cu, and Pb had been added by organic factors. In group C land use (water), the origin of most heavy metals is natural without anthropogenic sources. The Cd and As pollution was relatively more serious in different land use. The EFG technique used confirmed the anthropogenic influence of heavy metal pollution. All metals showed concentrations substantially higher than their background values, suggesting anthropogenic pollution.  相似文献   
46.
This paper investigates the effects of the incorporation of lignin and small quantities of epoxidized natural rubber (ENR) as an impact modifying agent on blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL). The addition of lignin resulted in a slight improvement of flexural strength and modulus of the ternary blending system. Incorporation of ENR into the blend resulted in an increase in notched Izod impact strength from 40 to 135% depending on the concentration of ENR. The addition of lignin into the blend resulted in an improvement of thermal stability of the ternary blend system. Morphological analysis showed a good dispersion of PHBV phases and lignin within the PCL matrix. Rheological characterization revealed that the presence of lignin resulted in increased storage modulus of the bioblend.  相似文献   
47.
Different scenarios of recharge and discharge were assessed for sustainable management of groundwater in Quaternary aquifer east of Nile Delta. MODFLOW was utilized to investigate the effect of land use change and damming construction in the upstream of the Nile River on the current and short-term groundwater management strategies. The interpretive transient simulation was performed between 2004 and 2016 after steady-state calibration in 2004, and transient state from 2004 to 2013 with different irrigation recharges associated with land use change in this period. Sensitivity analysis was performed for hydraulic conductivities, recharge, and conductance parameters. The predictive transient simulation was run till 2023 under three scenarios of increasing pumping rates by 15, 30, and 50% for agriculture expansion and specified head reduction of Port Said Canal by 0.2, 0.4, and 0.6 m associated with the reduction of Nile water levels after Grand Ethiopian Residence Dam, GERD operation in 2017. Results from the in- and out-flow budgets showed that groundwater aquifer is stable at the current rate of pumping till 2023. Groundwater heads decreased by 0.2 and 0.42 m in the southern section, and a slight increase in the northern part was noticed for the first and second scenarios, respectively. When additional pumping stress is applied (50% increase), groundwater head dropped by 0.66 m, and the storage is no longer able to maintain the aquifer capacity after 2020 (worst-case scenario).  相似文献   
48.
Most of coastal area in Nile Delta, Egypt, is salt-affected soils and have low carbon (C) and nitrogen (N) inputs as a result of declining vegetation growth and low net primary production. Therefore, this study amid to compare between C and N pools in degraded (uncultivated and salt-affected soil) and restored (cultivated and reclaimed 20 years ago) locations in North Nile Delta. and to examine the impact of cultivation on sequestering C and N pools in this area as one of the most important methods for mitigating climate change impacts. C and N pools increased significantly in surface soil from 2.99 and 0.43 Mgh?1 in uncultivated sites to 19.26 and 1.66 Mgh?1 in cultivated ones as salinity was reduced and net primary production was increased due to leaching and reclamation. Particulate (associated with sand) and nonparticulate (associated with clay +silt) soil organic C or N was significantly higher cultivated sites. In addition, nonparticulate organic C or N was lower than particulate part indicating and supporting the strong relationship between organic matter and clay. The sequestration rate (in approximately 1 m profile) was 1.69 and 0.14 Mgh?1 yr.?1 C and N pools respectively. Although the cultivation is leading to loss of organic matter in some areas; C and N in this coastal area are partially restored and stored. Therefore, restoration and appropriate management practices will lead to mitigate the negative impacts of climate change in this area.  相似文献   
49.
This paper reports environmental analysis results of food and tannery Tunisian companies to identify the features of environmental management system (EMS) that is implemented recently. EMS via ISO 14001 has become one of the principal tools used by companies to handle environmental aspects and impacts through their various complex activities interacted with environment. While several companies have implemented and maintained a formal EMS, it has related mainly to their benefits in short term without responding to the sustainable development recommendations and practices. This study focuses on the strong linkage between the EMS effectiveness of food–tannery Tunisian companies and sustainability. A proactive environmental management approach is proposed and adopts a qualitative and quantitative assessment for factor analysis. It provides a strategic EMS framework and principles for sustainability to evolve the future enterprises’ benefits that has a clear influence on environmental performance in long term.  相似文献   
50.
Nowadays our planet suffers from an accumulation of plastic products that have the potential to cause great harm to the environment in the form of air, water, and land pollution. Plastic water bottles have become a great problem in the environment because of the large numbers consumed throughout the world. Certain types of plastic bottles can be recycled but most of them are not. This paper describes an economical solvent-free process that converts polyethylene terephthalate (PET) bottles waste into carbon nanostructure materials via thermal dissociation in a closed system under autogenic pressure together with additives and/or catalyst, which can act as cluster nuclei for carbon nanostructure materials such as fullerenes and carbon nanotubes. This research succeeded in producing and controlling the microstructure of various forms of carbon nanoparticles from the PET waste by optimizing the preparation parameters in terms of time, additives, and amounts of catalyst.

Implications: Plastic water bottles are becoming a growing segment of the municipal solid waste stream in the world; some are recycled but many are left in landfill sites. Recycling PET bottles waste can positively impact the environment in several ways: for instance, reduced waste, resource conservation, energy conservation, reduced greenhouse gas emissions, and decreasing the amount of pollution in air and water sources. The main novelty of the present work is based on the acquisition of high-value carbon-based nanomaterials from PET waste by a simple solvent-free chemical technique. Thus, the prepared materials are considered to be promising, cheap, eco-friendly materials that may find use in different applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号