A sub-chronic toxicity experiment was conducted to examine tissue distribution and depuration of two microcystins (microcystin-LR and microcystin -RR) in the phytoplanktivorous filter-feeding silver carp during a course of 80 days. Two large tanks (A, B) were used, and in Tank A, the fish were fed naturally with fresh Microcystis viridis cells (collected from a eutrophic pond) throughout the experiment, while in Tank B, the food of the fish were M. viridis cells for the first 40 days and then changed to artificial carp feed. High Performance Liquid Chromatography (HPLC) was used to measure MC-LR and MC-RR in the M. viridis cells, the seston, and the intestine, blood, liver and muscle tissue of silver carp at an interval of 20 days. MC-RR and MC-LR in the collected Microcystis cells varied between 268-580 and 110-292 microg g(-1) DW, respectively. In Tank A, MC-RR and MC-LR varied between 41.5-99.5 and 6.9-15.8 microg g(-1) DW in the seston, respectively. The maximum MC-RR in the blood, liver and muscle of the fish was 49.7, 17.8 and 1.77 microg g(-1) DW, respectively. No MC-LR was detectable in the muscle and blood samples of the silver carp in spite of the abundant presence of this toxin in the intestines (for the liver, there was only one case when a relatively minor quantity was detected). These findings contrast with previous experimental results on rainbow trout. Perhaps silver carp has a mechanism to degrade MC-LR actively and to inhibit MC-LR transportation across the intestines. The depuration of MC-RR concentrations occurred slowly than uptakes in blood, liver and muscle, and the depuration rate was in the order of blood>liver>muscle. The grazing ability of silver carp on toxic cyanobacteria suggests an applicability of using phytoplanktivorous fish to counteract cyanotoxin contamination in eutrophic waters. 相似文献
Soil, sediment, water, and biota collected from the western coast of Korea were analyzed to determine occurrence and sources of perfluorinated compounds (PFCs). PFCs were significantly concentrations of PFCs were measured in some water and biological samples, while concentrations of PFCs in soils and sediments were relatively low. The most widely detected compound was found to be perfluorooctanesulfonate (PFOS), with a maximum concentration in water of 450 ng/L and in fish of 612 ng/g, dw. PFOS concentrations in water and biota were both less than those thought to cause toxicity. However, in both cases concentrations were within a factor of 10 of the toxicity threshold concentration. Concentrations of PFCs were significantly greater downstream than those upstream on the same river, suggesting point sources. Overall, the detection of PFCs at relatively great concentrations in various environmental matrixes from this region of Korea suggests that further studies characterizing PFCs and their potential risk to both humans and wildlife are needed. 相似文献
Ambient PM2.5 is one of the major risk factors for human health, and is not fully explained solely by mass concentration. We examined the short-term associations of cause-specific mortality (i.e., all-cause, cardiovascular, and respiratory mortality) with the 15 chemical constituents and sources of PM2.5 in four metropolitan cities of South Korea during 2014–2018. We found transition metals consistently showed significant associations with all-cause mortality, while the effects of other constituents varied across the cities and for cause of death. Carbonaceous components strongly affected the all-cause, cardiovascular, and respiratory mortality in Daejeon. Secondary inorganic aerosols, SO42? and NH4+, showed significant associations with respiratory mortality in Gwangju. We also found the sources from which species closely linked to mortality generally increased the relative mortality risks. Heavy metal markers from soil or industrial sources were significantly associated with mortality in all cities. However, several sources influenced mortality despite their marker species not being significantly associated with it. Secondary nitrate and secondary sulfate sources were linked to mortality in DJ. This could be attributed to the deep inland location, which might have facilitated formation of secondary inorganic aerosols. In addition, primary sources including mobile and coal combustion seemed to have acute impacts on respiratory mortality in Gwangju. Our findings suggest the necessity of positive matrix factorization (PMF)-based approaches for evaluating health effects of PM2.5 while considering the spatial heterogeneity in the compositions and source contributions of PM2.5.
ABSTRACT Measurements of residual perchloroethylene (PCE), a dry-cleaning solvent associated with human health effects, were made in dry-cleaned acetate cloth to enable improved characterizations of both occupational and environmental exposure. A limited sample size (25 acetate cloths) was used to explore the extent of inter-dry-cleaner variability in residual PCE and to characterize the effect of the pressing operation on residual PCE. A new method, which uses carbon-disulfide as the direct extracting agent, proved effective in the analysis of residual PCE, with a recovery-efficiency ≈ 75%. Inter-dry-cleaner variability of residual PCE, although marginally statistically significant, was relatively low, showing only a fourfold range compared to a 5-order-of-magnitude range obtained from Kawauchi and Nishiyama1. Pairwise comparison of residual PCE in nonpressed versus pressed acetate samples revealed a statistically significant reduction (p < 0.008), which amounted to a consistent (among dry-cleaners) pressing-related removal efficiency of 75 ± 4%. A preliminary assessment of the source term associated with the pressing operation (mass PCE liberated per kg cloth dry-cleaned, SPCE ≈ 30 mg/kg) indicates a minor contribution to the average ambient air concentrations within dry-cleaning establishments. 相似文献
Selective adsorption of a hazardous hydrophobic organic compound (HOC) by activated carbon as a means of recovering surfactants after a soil washing process was investigated. As a model system, phenanthrene was selected as a representative HOC and Triton X-100 as a nonionic surfactant. Three activated carbons that differed in size (Darco 20–40 (D20), 12–20 (D12) and 4–12 (D4) mesh sizes) were used in adsorption experiments. Adsorption of surfactant onto activated carbon showed a constant maximum above the critical micelle concentration, which were 0.30, 0.23, 0.15 g g−1 for D20, D12, and D4, respectively. Selectivity for phenanthrene to Triton X-100 was much higher than 1 over a wide range of activated carbon doses (0–6 g l−1) and initial phenanthrene concentrations (10–110 mg l−1). Selectivity generally increased with decreasing particle size, increasing activated carbon dose, and decreasing initial concentration of phenanthrene. The highest selectivity was 74.9, 57.3, and 38.3 for D20, D12, and D4, respectively, at the initial conditions of 10 mg l−1 phenanthrene, 5 g l−1 Triton X-100 and 1 g l−1 activated carbon. In the case of D20 at the same conditions, 86.5% of the initial phenanthrene was removed by sorption and 93.6% of the initial Triton X-100 remained in the solution following the selective adsorption process. The results suggest that the selective adsorption by activated carbon is a good alternative for surfactant recovery in a soil washing process. 相似文献
The changes in total P accumulation and P compounds with time in the plough layer in a paddy soil in southern Korea were investigated in relation to the continuous application of chemical fertilizers (NPK), straw based compost (Compost), combination these two (NPK+Compost) for 31 years. Continuous fertilization increased the total and inorganic P contents in plough layers. In NPK, inorganic P fraction did not change with time, but organic P content increased significantly. Long-term application of chemical fertilizer together with compost accelerated the decrease in the organic P fraction, presumably due to promoting microbial activity in the plow layer, and then increased significantly inorganic P fraction. Compost application decreased the residual P and Fe-P fractions and then increased inorganic P fraction, in spite of continuous compost application. Increase in total, inorganic and extractable P with time may be closely related to the increase in the availability of accumulated P for rice growth. 相似文献
This study aims to assess the feasibility of using slag, byproduct from iron and steel making industries, as a new reactive material for dechlorination reactions and to investigate dechlorination chemistries of the systems containing the slag and Fe(II). Initially, screening experiments were conducted to evaluate various systems containing slags with or without Fe(II). A combination of the steel converter slag and Fe(II) showed a potential to be developed as a reactive material to treat chlorinated organics. Further kinetic studies with the steel converter slag/Fe(II) systems revealed that the dechlorination capacity of the slag/Fe(II) system is comparable to that of zero-valent iron and generally higher than the cement/Fe(II) system. The slag/Fe(II) system can substantially dechlorinate trichloroethylene (TCE) in the neutral pH region, although the dechlorination rate was greatest in the pH region between 12 and 13. TCE reductions in the slag/Fe(II) system were observed to occur through reductive beta-elimination pathways that produce primarily acetylene and no chlorinated intermediates such as vinyl chloride. These results demonstrate that the steel converter slag with Fe(II) has sound characteristics for an alternative reactive medium for subsurface remediation. 相似文献
A vertically-integrated analytical model for dissolved phase transport is described that considers a time-dependent DNAPL source based on the upscaled dissolution kinetics model of Parker and Park with extensions to consider time-dependent source zone biodecay, partial source mass reduction, and remediation-enhanced source dissolution kinetics. The model also considers spatial variability in aqueous plume decay, which is treated as the sum of aqueous biodecay and volatilization due to diffusive transport and barometric pumping through the unsaturated zone. The model is implemented in Excel/VBA coupled with (1) an inverse solution that utilizes prior information on model parameters and their uncertainty to condition the solution, and (2) an error analysis module that computes parameter covariances and total prediction uncertainty due to regression error and parameter uncertainty. A hypothetical case study is presented to evaluate the feasibility of calibrating the model from limited noisy field data. The results indicate that prediction uncertainty increases significantly over time following calibration, primarily due to propagation of parameter uncertainty. However, differences between the predicted performance of source zone partial mass reduction and the known true performance were reasonably small. Furthermore, a clear difference is observed between the predicted performance for the remedial action scenario versus that for a no-action scenario, which is consistent with the true system behavior. The results suggest that the model formulation can be effectively utilized to assess monitored natural attenuation and source remediation options if careful attention is given to model calibration and prediction uncertainty issues. 相似文献
The photocatalytic degradation of Cartap Hydrochloride, a synthetic pesticide. has been investigated over coated TiO2 photocatalysts irradiated with a ultraviolet (UV) light. The effect of operational parameters, i.e., Cartap Hydrochloride concentration, reaction time, light intensity and additive on the degradation rate of aqueous solution of Cartap Hydrochloride has been examined. Results show that the employment of efficient photocatalysts and the selection of optimal operational parameters may lead to degradation of Cartap Hydrochloride solutions. 相似文献
The biomass of the brown seaweed, Ecklonia sp., is capable of reducing Cr(VI) to Cr(III). However, very little is known about the mechanism of Cr(VI) reduction by the biomass. The aims of the present investigation were to enhance the Cr(VI)-reducing capacity of the biomass using various chemical treatments and to elucidate the mechanisms governing Cr(VI) reduction. Among the various chemical treatments, acid-treatment showed the best performance with regards the improvement of Cr(VI) removal from the aqueous phase, while organic solvent-treatment significantly improved the removal efficiency of total Cr in the equilibrium state. Based on FTIR study, the biomass was subjected to chemical modification of its amino and carboxyl groups, to examine their roles in the Cr(VI) removal from the aqueous phase. Methylation of the amino group significantly decreased the Cr(VI) removal rate, but amination of the carboxyl group significantly increased the Cr(VI) removal rate. Meanwhile, esterification of the carboxyl group and carboxylation of the amino group decreased the Cr(VI) removal rate, but the former showed a more negative effect than the latter. These findings indicated that the amino and carboxyl groups take part in the Cr(VI) removal from the aqueous phase. In conclusion, mechanisms for direct and indirect Cr(VI) removal are proposed, and some aspects for the application of this biomass to Cr(VI) detoxification are discussed. 相似文献