首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   728篇
  免费   7篇
  国内免费   34篇
安全科学   9篇
废物处理   40篇
环保管理   42篇
综合类   53篇
基础理论   102篇
污染及防治   422篇
评价与监测   58篇
社会与环境   39篇
灾害及防治   4篇
  2023年   30篇
  2022年   154篇
  2021年   146篇
  2020年   47篇
  2019年   45篇
  2018年   42篇
  2017年   55篇
  2016年   45篇
  2015年   26篇
  2014年   36篇
  2013年   37篇
  2012年   22篇
  2011年   20篇
  2010年   7篇
  2009年   9篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1974年   1篇
排序方式: 共有769条查询结果,搜索用时 15 毫秒
761.
Environmental Science and Pollution Research - During the past few decades, the treatment of hazardous waste and toxic phenolic compounds has become a major issue in the pharmaceutical, gas/oil,...  相似文献   
762.

The current improvement in science and engineering, actively dealing with surfaces and interfaces, turns into a functioning control with a thriving advancement propensity. Superlyophobic/superlyophilic phenomena in surface sciences have pulled in broad considerations of researchers and specialists. Inspired by the natural and living organism, researchers have designed different biomimetic materials with exceptional surface wettability, such as the smart wetting of asymmetric spider silk surfaces. These smart materials with superlyophobic/superlyophilic wettability are generally utilized for water assortment, self-cleaning, fluid transportation and separation, and many researchers’ domains. Among them, emulsion separation, including division of oil-water blend, mixtures of immiscible liquids and oil-water emulsions, is highlighted by an increasing number of researchers. Numerous materials with one- and two-dimensional morphology, smart surfaces, and super wettability have been effectively designed and utilized in various scientific research applications. We expect that these bioinspired materials with super wettability can have promising applications in practical for emulsion destabilization and liquid transportation.

  相似文献   
763.
Environmental Science and Pollution Research - The COVID-19 pandemic has negatively affected the economic, social, and psychological aspects globally. COVID-19 can possibly spread through municipal...  相似文献   
764.
Environmental Science and Pollution Research - Sustainability in the utilization of products in all fields particularly food textiles, solar cells, etc. is of prime concern to the global community....  相似文献   
765.
Environmental Science and Pollution Research - Over the last few decades, the globe is facing tremendous effects due to the unnecessary piling of municipal solid waste among which food waste holds...  相似文献   
766.
767.
Chemically modified pullulan was evaluated for its sorption efficiency and selectivity to remove cadmium(Cd) from spiked high-hardness groundwater(GW). Pullulan esterified with succinic anhydride using dimethylaminopyridine showed a fairly high degree of substitution value as confirmed by1 H NMR spectroscopy. Pullulan succinate(Pull-Suc) was converted into the sodium salt(Pull-Suc-Na). The effect of contact time(5–200 min) and p H(2–8) on Cd-uptake by the sorbent(Pull-Suc-Na) was investigated. The sorbent showed more than 90% Cd-removal in first 15 min from distilled water(DW) and GW solution,respectively. Comparison of Pull-Suc-Na with other polysaccharidal sorbents suggested its high efficiency(DW 476.2 mg/g and GW 454.5 mg/g) and selectivity for the removal of Cd by an ion exchange mechanism, which is further supported by the negative Gibbs free energy values calculated from Langmuir isotherms. A Langmuir isotherm kinetic model provided the best fit for the sorption of Cd using Pull-Suc-Na. The sorbent showed a negligible decrease in Cd-uptake over three regeneration cycles. The thermal stability testing of the sorbents indicated that Pull-Suc-Na(sorbent) is more stable than Pull-Suc.  相似文献   
768.

Recently, nanosized cellulose materials extraction is extensively interesting from the sources of sustainable materials. Cellulose nanofibrils (CNF) extraction through green bio-based materials featured as promising interest in the field of science. In this study, dimethyl sulfoxide (DMSO) was applied to examine its effectiveness in pretreating the Ficus natalensis barkcloth cellulose (FNBC) for CNF production before 2,2,6,6,-tetramethylpiperidine-1-oxyl (TEMPO) oxidation. The pretreatment performance of DMSO was evaluated based on the structural and morphological changes. DMSO pretreated FNBC attained the most dramatic morphological changes as compared to untreated cellulose samples. The results of the scanning electron microscope (SEM) and transmission electron microscope (TEM) shows that there is an extensive structural disruption of FNBC during the pretreatment process, which could be because of outstanding ability to eliminate non-cellulosic materials and amorphous regions from the FNBC, confirmed by the X-ray diffractometry (XRD) showing higher crystallinity values, as well as higher thermal stabilities values of pretreated FNBC samples, were also noted. Overall, this study revealed a tremendously effective and pioneer pretreatment method for fractionating FNBC, to stimulate the successive extraction of cellulose nanofibrils. Furthermore, based on the cellulose and CNF characterizations, this study showed that F. natalensis barkcloth could be considered as an alternative source of cellulose for potential value-added industrial applications such as the food industry, paper making, and biomedicines.

Graphic Abstract
  相似文献   
769.

Climate change and increased greenhouse gas emissions boost the global average temperature to less than 2°C, which is the estimated breakeven point. The globe is moving into blue pollution economies as the environmental sustainability objective becomes more distorted. The study looked at three United Nations Sustainable Development Goals, namely (i) affordable and clean energy; (ii) industry, innovation, and infrastructure; and (iii) climate change, to see how far the Chinese economy has progressed toward green and clean development strategy. In the context of China, the “pollution damage function” was intended to refer to carbon damages related to carbon pricing, technological variables, sustained economic growth, incoming foreign investment, and green energy. The data was collected between 1975 and 2019 and analyzed using various statistical approaches. The results of the autoregressive distributed lag model suggest that carbon taxes on industrial emissions reduce carbon damages in the short and long run. Furthermore, a rise in inbound foreign investment and renewable energy demand reduces carbon damages in the short term, proving the “pollution halo” and “green energy” hypotheses; nonetheless, the results are insufficient to explain the stated results in the long run. In the long run, technology transfers and continued economic growth are beneficial in reducing carbon damages and confirming the potential of cleaner solutions in pollution mitigation. The causal inferences show the one-way relationship running from carbon pricing and technology transfer to carbon damages, and green energy to high-technology exports in a country. The impulse response estimates suggested that carbon tax, inbound foreign investment, and technology transfers likely decrease carbon damages for the next 10 years. On the other hand, continued economic growth and inadequate green energy sources are likely to increase carbon pollution in a country. The variance decomposition analysis suggested that carbon pricing and information and communication technology exports would likely significantly influence carbon damages over time. To keep the earth’s temperature within the set threshold, the true motivation to shift from a blue to a green economy required strict environmental legislation, the use of green energy sources, and the export of cleaner technologies.

Graphical abstract

Source: Authors’ self-extract

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号