首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   0篇
  国内免费   3篇
废物处理   3篇
环保管理   6篇
综合类   6篇
基础理论   9篇
污染及防治   23篇
评价与监测   16篇
社会与环境   1篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2013年   9篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1984年   1篇
  1965年   1篇
排序方式: 共有64条查询结果,搜索用时 140 毫秒
61.
Abstract: Spatial distribution of land use can have a substantial effect on surface and groundwater quality. Our objective was to test for trends in flow components and water quality related to changes in land use in the Alafia and Hillsborough River watersheds in Florida, USA, over the period 1974‐2007. In addition, water quality statistics were evaluated in the perspective of numeric water quality criteria and proposed reclassification of segments of the Alafia River. Trends in 10 water quality parameters and three discharge variables were evaluated using a nonparametric trend detection test. Results of land use analysis indicated substantial urbanization and loss of agricultural land in the study area. Discharge variables did not exhibit significant trends, whereas trends in the majority of water quality concentrations were negative or nonsignificant with total nitrogen and total Kjeldahl nitrogen as exceptions showing positive trends. Changes in nutrient pathways could not be clearly identified. Considering recently promulgated numeric nutrient criteria and standards for dissolved fluoride, much of the Alafia River was found to be out of compliance. While there were land use changes and changes in water quality over the study period, it was difficult to identify a direct cause‐effect relationship. Responses to regulatory efforts, such as the Clean Water Act and improvements in phosphate mining practices, may have had greater impacts on water quality than changes in land use.  相似文献   
62.
Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.  相似文献   
63.

The huge amounts of sewage sludge produced by municipal wastewater treatment plants induce major environmental and economical issues, calling for advanced disposal methods. Traditional methods for sewage sludge disposal increase greenhouse gas emissions and pollution. Moreover, biochar created from sewage sludge often cannot be used directly in soil applications due to elevated levels of heavy metals and other toxic compounds, which alter soil biota and earthworms. This has limited the application of sewage sludge-derived biochar as a fertilizer. Here, we review biomass and sewage sludge co-pyrolysis with a focus on the stabilization of heavy metals and toxicity reduction of the sludge-derived biochar. We observed that co-pyrolyzing sewage sludge with biomass materials reduced heavy metal concentrations and decreased the environmental risk of sludge-derived biochar by up to 93%. Biochar produced from sewage sludge and biomass co-pyrolysis could enhance the reproduction stimulation of soil biota by 20‒98%. Heavy metals immobilization and transformation are controlled by the co-feed material mixing ratio, pyrolysis temperature, and pyrolysis atmosphere.

  相似文献   
64.
Environmental Science and Pollution Research - The eddy covariance (EC) technique was used to measure variations of orchard-atmosphere CO2 exchange, as a function of meteorological variables in an...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号