首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   3篇
  国内免费   3篇
安全科学   12篇
废物处理   28篇
环保管理   6篇
综合类   9篇
基础理论   21篇
污染及防治   65篇
评价与监测   22篇
社会与环境   9篇
灾害及防治   1篇
  2022年   13篇
  2021年   7篇
  2019年   6篇
  2018年   7篇
  2017年   11篇
  2016年   4篇
  2015年   6篇
  2014年   7篇
  2013年   11篇
  2012年   8篇
  2011年   12篇
  2010年   6篇
  2009年   10篇
  2008年   9篇
  2007年   10篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   9篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有173条查询结果,搜索用时 140 毫秒
61.
Material flow analysis (MFA) has been applied to assess the environmental impact of human activities on nutrient flows at the commune scale. This paper reports the assessment of human excreta and animal manure as a nutrient source for paddy fields and fishponds in Hoang Tay commune, Ha Nam province, Vietnam. The quality of MFA model was confirmed through modified uncertainty analysis, then was used to originally quantify and visualize the interlinks of livestock with the environmental sanitation and agricultural system in terms of nutrients. Currently, half of the pig manure was collected to the biogas, and the remainders were freely discharged to the commune’s drainage system (25%) or directly reused in the paddy fields (25%). While wastewater in the drainage system was the biggest source of nitrogen (contributed 46%), paddy field was the biggest source of phosphorous (contributed 55%) discharged to the Nhue River, totaling 57 ± 9 ton N and 29 ± 6 ton P, annually. Consequently, mitigation measures for nutrient resource management were proposed, and reducing half of chemical fertilizers applied and reusing all excreta and manure in the paddy fields were the most effective option.  相似文献   
62.
Environmental monitoring and modelling, especially in the regional context, has seen significant progress with the widely usage of satellite measurement in conjunction with local meteorological and air quality monitoring to understand the atmospheric dispersion and transport of air pollutants. This paper studies the application of these data and modelling tools to understand the environment effects of a major bushfire period in the state of New South Wales (NSW), Australia, in 2013. The bushfires have caused high pollution episodes at many sites in the greater Sydney metropolitan areas. The potential long-range transport of aerosols produced by bushfires to other region and states has been seen by regulators as a major concern. Using data and images collected from satellites, in addition to the results obtained from different simulations carried out using HYSPLIT trajectory model and a regional meteorological model called Conformal Cubic Atmospheric Model (CCAM), we were able to identify at least 2 days on which the smoke aerosols from bush fires in NSW has been transported at high altitude to the northern state of Queensland and the Coral Sea. As a result, widespread high particle concentration in South East Queensland including the Brisbane area, as measured by nearly all the air quality monitoring stations in this region, occurred on the day when the smoke aerosols intruded to lower altitude as indicated by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Lidar measurements on the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The use of meteorological or air quality modelling to connect the ground-based measurements with satellite observations as shown in this study is useful to understand the pollutant transport due to bushfires and its impact on regional air quality.  相似文献   
63.
Abstract: The watershed scale Soil and Water Assessment Tool (SWAT) model divides watersheds into smaller subwatersheds for simulation of rainfall‐runoff and sediment loading at the field level and routing through stream networks. Typically, the SWAT model first needs to be calibrated and validated for accurate estimation through adjustment of sensitive input parameters (i.e., Curve Number values, USLE P, slope and slope‐length, and so on). However, in some instances, SWAT‐simulated results are greatly affected by the watershed delineation and Digital Elevation Models (DEM) cell size. In this study, the SWAT ArcView GIS Patch II was developed for steep sloping watersheds, and its performance was evaluated for various threshold values and DEM cell size scenarios when delineating subwatersheds using the SWAT model. The SWAT ArcView GIS Patch II was developed using the ArcView GIS Avenue program and Spatial Analyst libraries. The SWAT ArcView GIS Patch II improves upon the SWAT ArcView GIS Patch I because it reflects the topographic factor in calculating the field slope‐length of Hydrologic Response Units in the SWAT model. The simulated sediment value for 321 subwatersheds (watershed delineation threshold value of 25 ha) is greater than that for 43 subwatersheds (watershed delineation threshold value of 200 ha) by 201% without applying the SWAT ArcView GIS Patch II. However, when the SWAT ArcView GIS Patch II was applied, the difference in simulated sediment yield decreases for the same scenario (i.e., difference in simulated sediment with 321 subwatersheds and 43 subwatersheds) was 12%. The simulated sediment value for DEM cell size of 50 m is greater than that for DEM cell size of 10 m by 19.8% without the SWAT ArcView GIS Patch II. However, the difference becomes smaller (3.4% difference) between 50 and 10 m with the SWAT ArcView GIS Patch II for the DEM scenarios. As shown in this study, the SWAT ArcView GIS Patch II can reduce differences in simulated sediment values for various watershed delineation and DEM cell size scenarios. Without the SWAT ArcView GIS Patch II, variations in the SWAT‐simulated results using various watershed delineation and DEM cell size scenarios could be greater than those from input parameter calibration. Thus, the results obtained in this study show that the SWAT ArcView GIS Patch II should be used when simulating hydrology and sediment yield for steep sloping watersheds (especially if average slope of the subwatershed is >25%) for more accurate simulation of hydrology and sediment using the SWAT model. The SWAT ArcView GIS Patch II is available at http://www.EnvSys.co.kr/~swat for free download.  相似文献   
64.
Whole effluent toxicity (WET) tests, with Daphnia magna and Selenastrum capricornutum, were introduced to evaluate the biological toxicities of effluents from the wastewater treatment plants (WWTPs) in Korea. In WET tests of WWTPs effluents, 33.3% (33/99) for D. magna and 92.6% (75/81) for S. capricornutum revealed greater than 1 toxic unit (TU), even though all the treatment plants investigated were operating in compliance with the regulations, as assessed using conventional monitoring methods (i.e., BOD and total concentration of N or P, etc). There were only minor differences in toxicities according to the types of influents (municipal and agro-industrial) in all treatment plants. However, the effluents treated by an activated sludge treatment process were found to exhibit significantly lower toxicity than those treated by rotating biological contactor (RBC) and extended aeration processes. The seasonal variations in the toxicity were lower in the summer compared to winter, which may have been due to the rainfall received to the sewage intake system during the former period. The impact of WET on river water was also investigated based on the discharge volume. At sites A and B, the total impact of toxicity to stream and river waters was observed to be 70.9% and 90.4% for D. magna and S. capricornutum, respectively. The other four small treatment plants (sites F, G, H and I), with relative discharging volumes between 0.001 and 0.002, contribute less than 1% to the total toxicity.  相似文献   
65.
The soil quality of remediated land is altered and this land consequently exerts unexpected biological effects on terrestrial organisms. Therefore, field evaluation of such land should be conducted using biological indicators. Algae are a promising new biological indicator since they are a food source for organisms in higher soil trophic levels and easily sampled from the soil. Field evaluation of soil characteristics is preferred to be testing in laboratory conditions because many biological effects cannot be duplicated during laboratory evaluations. Herein, we describe a convenient and rapid algae-soaked disc seeding assay for assessing soil quality in the field based on soil algae. The collection of algae is easy and rapid and the method predicts the short-term quality of contaminated, remediated, and amended farm and paddy soils. The algae-soaked disc seeding assay is yet to be extensively evaluated, and the method cannot be applied to loamy sand soil in in situ evaluations. The algae-soaked disc seeding assay is recommended for prediction of soil quality in in situ evaluations because it reflects all variations in the environment. The algae-soaked disc seeding assay will help to develop management strategies for in situ evaluation.  相似文献   
66.
Jeong S  Moon HS  Nam K  Kim JY  Kim TS 《Chemosphere》2012,88(2):204-210
In this study, phosphate-solubilizing bacteria (PSB), Bacillus megaterium, were used to enhance Cd bioavailability and phytoextractability of Cd from contaminated soils. This strain showed a potential for directly solubilizing phosphorous from soils more than 10 folds greater than the control without inoculation. The results of pot experiments revealed that inoculation with B. megaterium significantly increased the extent of Cd accumulation in Brassica juncea and Abutilon theophrasti by two folds relative to the uninoculated control. The maximum Cd concentrations due to inoculation were 1.6 and 1.8 mg Cd g−1 plant for B. juncea and A. theophrasti after 10 wk, respectively. The total biomass of A. theophrasti was not significantly promoted by the inoculation treatment, yet the total biomass of B. juncea increased from 0.087 to 0.448 g. It is also worth to mention that B. juncea predominantly accumulates Cd in its stems (39%) whereas A. theophrasti accumulates it in its leaves (68%) after 10 wk. The change of the Cd speciation indicated that inoculation of B. megaterium as PSB increased the bioavailabilty of Cd and consequently enhanced its uptake by plants. The present study may provide a new insight for improving phytoremediation using PSB in the Cd-contaminated soils.  相似文献   
67.
Hogarh JN  Seike N  Kobara Y  Habib A  Nam JJ  Lee JS  Li Q  Liu X  Li J  Zhang G  Masunaga S 《Chemosphere》2012,86(7):718-726
A comprehensive congener specific evaluation of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in the atmosphere was conducted across East Asia in spring 2008, applying polyurethane foam (PUF) disk passive air sampler (PAS) as monitoring device. Mean concentrations derived for Japan, China and Korea were 184 ± 24, 1100 ± 118, and 156 ± 20 pg m−3 for ∑202 PCBs, and 9.5 ± 1.5, 61 ± 6, and 16 ± 2.4 pg m−3 for ∑63 PCNs, respectively. Relative to reported data from 2004, the present results suggest that air PCBs concentrations have not changed much in Japan and Korea, while it has increased by one order of magnitude in China. From principal component analysis, combustion emerged highly culpable in contemporary emissions of both PCBs and PCNs across the East Asian sub-region. Another factor derived as important to air PCBs was re-emissions/volatilization. Signals from PCBs formulations were also picked, but their general importance was virtually consigned to the re-emissions/volatilization tendencies. On the contrary, counterpart PCNs formulations did not appear to contribute much to air PCNs.  相似文献   
68.
Recognition has grown among policy-makers that early in the decision-making process, there is a need for an environmental assessment of the effects of the policy, plan, and program (PPP) and their alternatives. Strategic environmental assessment (SEA) is widely recognized as a supporting tool that systematically integrates environmental aspects into strategic decision-making processes, thereby contributing to sustainable development. In this study, SEA was applied for an integrated assessment of environmental, social, and economic impacts of a wide range of scenarios for transport-related air quality policies to help decision-makers in identifying the most sustainable scenario with the purpose of reducing carbon monoxide (CO) concentrations from transport emissions in Hanoi City, Vietnam. In conducting SEA process, the urban air dispersion model MUAIR was used as a quantitative tool in prediction of CO concentrations. To evaluate the predicted impacts of scenarios, the SEA objectives concerning sustainability and the corresponding sustainable indicators were identified. Based on the likely significant predicted impacts on landscape, biodiversity, and health benefits, mitigation measures were proposed. These included planning in infrastructure development and implementation of public education campaign. The results of predicted and evaluated impacts of scenarios as well as proposed mitigation measures were taken into account for supporting sound decision-making that is consistent with the principles of sustainable development. Considering sustainable impacts of the scenarios, the SEA result clearly indicates that a combination of policy for public transport development and policy for installation of oxidation catalytic converter for motorcycles is the most sustainable scenario for reducing CO concentrations from transport emissions.  相似文献   
69.
Ko KB  Byun Y  Cho M  Namkung W  Shin DN  Koh DJ  Kim KT 《Chemosphere》2008,71(9):1674-1682
The influence of HCl on the oxidation of gaseous elemental mercury (Hg0) has been investigated using a dielectric barrier discharge (DBD) plasma process, where the temperature of the plasma reactor and the composition of gas mixtures of HCl, H2O, NO, and O2 in N2 balance have been varied. We observe that Cl atoms and Cl2 molecules, created by the DBD process, play important roles in the oxidation of Hg0 to HgCl2. The addition of H2O to the gas mixture of HCl in N2 accelerates the oxidation of Hg0, although no appreciable effect of H2O alone on the oxidation of Hg0 has been observed. The increase of the reaction temperature in the presence of HCl results in the reduction of Hg0 oxidation efficiency probably due to the deterioration of the heterogeneous chemical reaction of Hg0 with chlorinated species on the reactor wall. The presence of NO shows an inhibitory effect on the oxidation of Hg0 under DBD of 16% O2 in N2, indicating that NO acts as an O and O3 scavenger. At the composition of Hg0 (280 microg m(-3)), HCl (25 ppm), NO (204 ppm), O2 (16%) and N2 (balance) and temperature 90 degrees C, we obtain the nearly complete oxidation of Hg0 at a specific energy density of 8 J l(-1). These results lead us to suggest that the DBD process can be viable for the treatment of mercury released from coal-fired power plants.  相似文献   
70.
Lee ES  Woo NC  Schwartz FW  Lee BS  Lee KC  Woo MH  Kim JH  Kim HK 《Chemosphere》2008,71(5):902-910
Release and spreading of permanganate (MnO(4)(-)) in the well-based controlled-release potassium permanganate (KMnO(4)) barrier system (CRP system) was investigated by conducting column release tests, model simulations, soil oxidant demand (SOD) analyses, and pilot-scale flow-tank experiments. A large flow tank (L x W x D=8m x 4m x 3m) was constructed. Pilot-scale CRP pellets (OD x L=0.05 m x1.5m; n=110) were manufactured by mixing approximately 198 kg of KMnO(4) powders with paraffin wax and silica sands in cylindrical moulds. The CRP system (L x W x D=3m x 4m x 1.5m) comprising 110 delivery wells in three discrete barriers was constructed in the flow tank. Natural sands (organic carbon content=0.18%; SOD=3.7-11 g MnO(4)(-)kg(-1)) were used as porous media. Column release tests and model simulations indicated that the CRP system could continuously release MnO(4)(-) over several years, with slowly decreasing release rates of 2.5 kg d(-1) (day one), 109 g d(-1) (day 100), 58 g d(-1) (year one), 22 g d(-1) (year five), and 12 g d(-1) (year 10). Mean MnO(4)(-) concentrations within the CRP system ranged from 0.5 to 6 mg l(-1) during the 42 days of testing period. The continuously releasing MnO(4)(-) was gradually removed by SOD limiting the length of MnO(4)(-) zone in the porous media. These data suggested that the CRP system could create persistent and confined oxidation zone in the subsurface. Through development of advanced tools for describing agent transport and facilitating lateral agent spreading, the CRP system could provide new approach for long-term in situ treatment of contaminant plumes in groundwater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号