首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
  国内免费   6篇
安全科学   1篇
废物处理   7篇
综合类   10篇
基础理论   8篇
污染及防治   24篇
评价与监测   6篇
社会与环境   2篇
  2023年   1篇
  2022年   8篇
  2021年   13篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   2篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
11.
This study deals with generation, composition, collection, transportation, and disposal, as well as the present cost of the waste management on the basis of 60% collection of the total waste and the cost of proposed improved system of management on the basis of 100% waste collection using the IWM-2 LCI model. A GIS map of Data Ganj Bakhsh Town (DGBT) of Lahore City District showing communal storage facilities is also provided. DGBT has a population of 1,624,169 living in 232,024 dwellings. The total waste generated per year is 500,000 tons, or 0.84/kg/cap/day. Presently 60% of the MSW is collected and disposed in open dumps, while 40% is not collected and lies along roadsides, streets railway lines, depressions, vacant plots, drains, storm drains and open sewers. In DGBT, 129 containers of 5-m3 capacity, 120 containers of 10-m3 capacity and 380 skips of 2.5-m3 capacity are placed for waste collection. The overall collection and disposal cost of the MSW of DGBT is $3,177,900/yr, which is $10.29/ton. Modeling was conducted using the IWM-2 model for improved collection and disposal on the basis of 100% service, compared to the current 60% service. The modelled cost is $8.3/per ton, which is 20% less than the present cost, but the overall cost of 100% collection and disposal increases to $4,155,737/yr.  相似文献   
12.
There is a demand for the development of environmental friendly methods for the synthesis of graphene composites. Reduced graphene oxide/silver (RGO/Ag) nanocomposites are very good catalysts. Here, we propose a simple, green method for the synthesis of RGO/Ag nanocomposite using the amino acid tyrosine as bioreductant and stabilizing agent. RGO/Ag nanocomposite was characterized by using various analytical techniques and studied for its catalytic degradation of 4-nitrophenol. Results of attenuated total reflectance Fourier transform infrared spectroscopy and Zeta potential at ?55 mV reveal the surface capping of tyrosine onto the reduced graphene oxide nanosheets. RGO/Ag nanocomposites show excellent catalytic reduction of 4-nitrophenol with NaBH4, when compared to actual individual silver nanoparticles.  相似文献   
13.
Environmental Science and Pollution Research - We examine the causal impacts of the cash transfer program, namely the Benazir Income Support Program (BISP), on residential demand for electricity...  相似文献   
14.
Environmental Science and Pollution Research - Green finance is inextricably linked to investment risk, particularly in emerging and developing economies (EMDE). This study uses the difference in...  相似文献   
15.
Environmental Science and Pollution Research - Biochar remediation efficiency could be enhanced through numerous treatments such as acids treatment. Still, there has little work done on...  相似文献   
16.
Environmental Science and Pollution Research - Microbial fuel cells (MFCs) can obtain electrical energy from extensive organic matter and complete wastewater treatment at the same time. The...  相似文献   
17.
This paper reports the application of Box-Behnken experimental design to illustrate the adsorption of direct dyes (Indosol Black NF and Indosol Orange RSN) using polyethyleneimine (PEI)-treated peanut husk biomass. The effect of three independent variables (initial dyes concentration, biosorbent dose and pH) was investigated during the study. Maximum biosorption capacity (141 and 98.2 mg/g) of PEI-pretreated biomass was achieved with 200 mg/L initial dye concentration and 0.05 g/50 mL biomass dose for Indosol Black NF and Indosol Orange RSN, respectively. Acidic pH was found to be favourable for maximum dyes removal. Characterisation of biosorbent was carried out through Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy, thermogravimetric analysis (TGA) and point of zero charge determination. FT-IR analyses confirmed the involvement of carboxylic and carbonyl groups. The desorption study was also conducted to check out the possibility of regeneration of dyes and adsorbent and it was found that 51.58 and 76.6% of Indosol Black NF and Indosol Orange RSN, respectively, can be desorbed from the loaded biosorbent by using 1 M NaOH solution. The results indicated that PEI-treated peanut husk biomass can be used as an efficient biosorbent for the removal of Indosol Black NF and Indosol Orange RSN dyes from aqueous solutions.  相似文献   
18.
Journal of Polymers and the Environment - The alkali-soluble cell wall polysaccharides (CWPs), extracted from Nelumbo nucifera rhizome flour (NNRF), were treated with microwave radiation to modify...  相似文献   
19.
The present work describes the removal of Novacron Golden Yellow (NGY) dye from aqueous solutions using peanut hulls. The experiments were performed with native, pretreated and immobilised forms of peanut hulls. The effect of various operational parameters (pH, biosorbent dose, initial dye concentration and temperature etc.) was explored during batch study. NGY showed maximum removal at low pH and low biosorbent dose. High initial dye concentration facilitated the biosorption process. Maximum dye removal with native, pretreated and immobilised biomass was found to be 35.7, 36.4 and 15.02 mg/g respectively. The experimental data were subjected to different kinetic and equilibrium models. The kinetic data confirmed the fitness of pseudo-second-order rate law for NGY biosorption. The equilibrium modelling was carried out by Freundlich, Langmuir and Temkin models. The isothermal data of NGY removal were best described by Freundlich adsorption isotherm. Negative values of Free energy change (Δ G0) for NGY with native and pretreated biomass depicted the spontaneous nature of biosorption process. In column mode, the effects of bed height, flow rate and initial dye concentrations were optimised. Maximum NGY biosorption (7.28 mg/g) was observed with high bed height, low flow rate and high initial concentration in continuous mode. Bohart–Adams model best fitted to the data obtained from column studies. The results indicated that the peanut hulls could be used effectively for the removal of dyes containing wastewater.  相似文献   
20.
Environmental Science and Pollution Research - Heavy metals (HMs) being the notorious and toxic are being introduced into the environment credited to natural and anthropogenic activities. The use...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号