首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   8篇
  国内免费   3篇
安全科学   3篇
废物处理   4篇
环保管理   42篇
综合类   14篇
基础理论   54篇
环境理论   1篇
污染及防治   27篇
评价与监测   11篇
社会与环境   11篇
灾害及防治   2篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   6篇
  2016年   11篇
  2015年   4篇
  2014年   5篇
  2013年   8篇
  2012年   9篇
  2011年   11篇
  2010年   11篇
  2009年   9篇
  2008年   8篇
  2007年   9篇
  2006年   10篇
  2005年   16篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1986年   2篇
  1985年   1篇
排序方式: 共有169条查询结果,搜索用时 31 毫秒
161.
The US fleet of coal-fired power plants, with generating capacity of just over 300 GW, is known to be a major source of domestic mercury (Hg) emissions. To address this, in March 2005, the Environmental Protection Agency (EPA) promulgated the Clean Air Mercury Rule (CAMR) to reduce emissions of mercury from these plants. It is generally believed that most of the initial (Phase I) mercury reductions will come as a co-benefit of existing controls used to remove particulate matter (PM), SO2, and NO X . Deeper reductions in emissions (as required in Phase II of CAMR) may require the installation of mercury-specific control technology. Duct injection of activated carbon sorbents is the mercury-specific control technology that has been most widely studied and has been demonstrated over a wide range of coal types and combustion conditions. The effectiveness of the mercury control options (both “co-benefit control” and “mercury-specific control”) is significantly impacted by site-specific characteristics such as the combustion conditions, the configuration of existing air pollution controls, and the type of coal burned. This paper identifies the role of coal properties and combustion conditions in the capture of mercury by fly ash and injected sorbents.  相似文献   
162.
163.
Persistence of species in fragmented landscapes depends on dispersal among suitable breeding sites, and dispersal is often influenced by the "matrix" habitats that lie between breeding sites. However, measuring effects of different matrix habitats on movement and incorporating those differences into spatially explicit models to predict dispersal is costly in terms of time and financial resources. Hence a key question for conservation managers is: Do more costly, complex movement models yield more accurate dispersal predictions? We compared the abilities of a range of movement models, from simple to complex, to predict the dispersal of an endangered butterfly, the Saint Francis' satyr (Neonympha mitchellii francisci). The value of more complex models differed depending on how value was assessed. Although the most complex model, based on detailed movement behaviors, best predicted observed dispersal rates, it was only slightly better than the simplest model, which was based solely on distance between sites. Consequently, a parsimony approach using information criteria favors the simplest model we examined. However, when we applied the models to a larger landscape that included proposed habitat restoration sites, in which the composition of the matrix was different than the matrix surrounding extant breeding sites, the simplest model failed to identify a potentially important dispersal barrier, open habitat that butterflies rarely enter, which may completely isolate some of the proposed restoration sites from other breeding sites. Finally, we found that, although the gain in predicting dispersal with increasing model complexity was small, so was the increase in financial cost. Furthermore, a greater fit continued to accrue with greater financial cost, and more complex models made substantially different predictions than simple models when applied to a novel landscape in which butterflies are to be reintroduced to bolster their populations. This suggests that more complex models might be justifiable on financial grounds. Our results caution against a pure parsimony approach to deciding how complex movement models need to be to accurately predict dispersal through the matrix, especially if the models are to be applied to novel or modified landscapes.  相似文献   
164.
Understanding the dynamics of population recovery is particularly complex when an organism has multiple, remote breeding and feeding grounds separated by one of the longest known migration routes. This study reports on the most comprehensive assessment of humpback whale (Megaptera novaeangliae) movements between remote Antarctic waters south of New Zealand and east Australia (EA), and the migratory corridors and breeding grounds of Australia and Oceania. A total of 112 individual whales were identified; 57 from microsatellites and 61 by fluke with 23 % (n = 26) matched to sites outside Antarctica. Despite large datasets from other southern regions being included in the comparison, the whales were predominantly linked to EA (n = 24). Only two matches to the Oceania catalogues directly north was surprising; therefore the primary feeding grounds of these endangered whales still remain unknown. The confirmation of the Balleny Islands as an important feeding ground for EA whales could provide an insight into reasons behind the rapid recovery of this population. Determining the feeding grounds of Oceania’s whales may explain whether prey energetics or migration length are limiting factors to their recovery and will allow an understanding of future ecosystem changes in these whales.  相似文献   
165.
The short term human exposure studies conducted on populations exposed to high concentrations of inorganic arsenic in soil have been inconsistent in demonstrating a relationship between environmental concentrations and exposure measures. In Australia there are many areas with very high arsenic concentrations in residential soil most typically associated with gold mining activities in rural areas. This study aimed to investigate the relationship between environmental arsenic and urinary inorganic arsenic concentrations in a population living in a gold mining area (soil arsenic concentrations between 9 and 9900 mg kg(-1)), and a control population with low arsenic levels in soil (between 1 and 80 mg kg(-1)). Risk factors for increased urinary arsenic concentrations were also explored. There was a weak but significant relationship between soil arsenic concentrations and inorganic urinary arsenic concentration with a Spearman correlation coefficient of 0.39. When participants with greater than 100 mg kg(-1) arsenic in residential soil were selected, the coefficient increased to 0.64. The geometric mean urinary inorganic arsenic concentration for the exposed group was 1.64 microg L(-1) (相似文献   
166.
This paper sets out the legislative background to the recycling of waste materials in the UK. Relevant items in this background include: the provision of recycling credits under the 1990 Environmental Protection Act; the draft EC Packaging Waste Directive; and the German DSD scheme. We next set out the elements of a cost‐benefit analysis of waste paper recycling, including the environmental impacts of recycling. The method is then applied to a recycling scheme in central Scotland. We find that whilst on private, financial grounds the scheme is unattractive, it passes the cost‐benefit test in the base‐line case; this justifies government support for this recycling scheme, given the data used.  相似文献   
167.
A flexible procedure for the development of a multi-criteria composite index to measure relative vulnerability under future climate change scenarios is presented. The composite index is developed using the Weighted Ordered Weighted Average (WOWA) aggregation technique which enables the selection of different levels of trade-off, which controls the degree to which indicators are able to average out others. We explore this approach in an illustrative case study of the United States (US), using future projections of widely available indicators quantifying flood vulnerability under two scenarios of climate change. The results are mapped for two future time intervals for each climate scenario, highlighting areas that may exhibit higher future vulnerability to flooding events. Based on a Monte Carlo robustness analysis, we find that the WOWA aggregation technique can provide a more flexible and potentially robust option for the construction of vulnerability indices than traditionally used approaches such as Weighted Linear Combinations (WLC). This information was used to develop a proof-of-concept vulnerability assessment to climate change impacts for the US Army Corps of Engineers. Lessons learned in this study informed the climate change screening analysis currently under way.  相似文献   
168.
A central tenet of landscape ecology is that mobile species depend on complementary habitats, which are insufficient in isolation, but combine to support animals through the full annual cycle. However, incorporating the dynamic needs of mobile species into conservation strategies remains a challenge, particularly in the context of climate adaptation planning. For cold-water fishes, it is widely assumed that maximum temperatures are limiting and that summer data alone can predict refugia and population persistence. We tested these assumptions in populations of redband rainbow trout (Oncorhynchus mykiss newberrii) in an arid basin, where the dominance of hot, hyperproductive water in summer emulates threats of climate change predicted for cold-water fish in other basins. We used telemetry to reveal seasonal patterns of movement and habitat use. Then, we compared contributions of hot and cool water to growth with empirical indicators of diet and condition (gut contents, weight–length ratios, electric phase angle, and stable isotope signatures) and a bioenergetics model. During summer, trout occurred only in cool tributaries or springs (<20 °C) and avoided Upper Klamath Lake (>25 °C). During spring and fall, ≥65% of trout migrated to the lake (5–50 km) to forage. Spring and fall growth (mean [SD] 0.58% per day [0.80%] and 0.34 per day [0.55%], respectively) compensated for a net loss of energy in cool summer refuges (–0.56% per day [0.55%]). In winter, ≥90% of trout returned to tributaries (25–150 km) to spawn. Thus, although perennially cool tributaries supported thermal refuge and spawning, foraging opportunities in the seasonally hot lake ultimately fueled these behaviors. Current approaches to climate adaptation would prioritize the tributaries for conservation but would devalue critical foraging habitat because the lake is unsuitable and unoccupied during summer. Our results empirically demonstrate that warm water can fuel cold-water fisheries and challenge the common practice of identifying refugia based only on summer conditions.  相似文献   
169.
Restoration programs in the form of ex-situ breeding combined with reintroductions are becoming critical to counteract demographic declines and species losses. Such programs are increasingly using genetic management to improve conservation outcomes. However, the lack of long-term monitoring of genetic indicators following reintroduction prevents assessments of the trajectory and persistence of reintroduced populations. We carried out an extensive monitoring program in the wild for a threatened small-bodied fish (southern pygmy perch, Nannoperca australis) to assess the long-term genomic effects of its captive breeding and reintroduction. The species was rescued prior to its extirpation from the terminal lakes of Australia's Murray-Darling Basin, and then used for genetically informed captive breeding and reintroductions. Subsequent annual or biannual monitoring of abundance, fitness, and occupancy over a period of 11 years, combined with postreintroduction genetic sampling, revealed survival and recruitment of reintroduced fish. Genomic analyses based on data from the original wild rescued, captive born, and reintroduced cohorts revealed low inbreeding and strong maintenance of neutral and candidate adaptive genomic diversity across multiple generations. An increasing trend in the effective population size of the reintroduced population was consistent with field monitoring data in demonstrating successful re-establishment of the species. This provides a rare empirical example that the adaptive potential of a locally extinct population can be maintained during genetically informed ex-situ conservation breeding and reintroduction into the wild. Strategies to improve biodiversity restoration via ex-situ conservation should include genetic-based captive breeding and longitudinal monitoring of standing genomic variation in reintroduced populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号