首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   4篇
  国内免费   2篇
安全科学   6篇
废物处理   6篇
环保管理   17篇
综合类   79篇
基础理论   51篇
污染及防治   74篇
评价与监测   6篇
社会与环境   10篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   8篇
  2017年   8篇
  2016年   15篇
  2015年   8篇
  2014年   17篇
  2013年   14篇
  2012年   15篇
  2011年   16篇
  2010年   15篇
  2009年   12篇
  2008年   16篇
  2007年   16篇
  2006年   10篇
  2005年   11篇
  2004年   10篇
  2003年   12篇
  2002年   8篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
11.
De Lisi R  Lazzara G  Milioto S  Muratore N 《Chemosphere》2007,69(11):1703-1712
Laboratory-scale studies were aimed at elucidating the physico-chemical aspects on the removal process of crystal violet (CV) from waters and solid substrates. The laponite clay (RD) and sand were chosen for the double aim at investigating them as CV adsorbents for water treatment and as substrates which mime the soil components. Sand is very effective in removing CV from waters. The cyclodextrins (CDs) were exploited as solubility-enhancement agents to remove CV from the solid substrates. They are powerful solvent media because they extract the CV from sand forming water-soluble CV/CD inclusion complexes and do not show affinity for sand. Optimum performance was shown by the modified CDs (i.e. hydroxypropyl-β-cyclodextrin and methyl-β-cyclodextrin). A linear correlation between the logarithm of the equilibrium constant for the CV/CD inclusion complexes formation (Kcpx) and the maximum amount of CV extracted from sand in the columns experiments at a flow rate of 1.5 ml min−1 was drawn. This relationship predicts that CDs with Kcpx < 180 M−1 are not suitable for CV removal from sand. CDs failed to displace CV from RD because they generate the formation of RD clusters where CV remains entrapped.  相似文献   
12.
In situ benthic flux experiments were conducted at two stations in the Mar Piccolo of Taranto (Italy), one of the most industrialised and contaminated coastal areas of the Mediterranean. Sediments of the two stations are notably different in their trace metal content, with a station closer to a Navy harbour showing higher mean concentrations of almost all investigated metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn). Conversely, both stations are characterised by significant Hg contamination, compared to the local baseline. Results of a sequential extraction scheme on surface sediments suggest a relatively scarce mobility of the examined metals (Zn > Ni > Cr > As > Cu > Pb). A Hg-specific extraction procedure showed that most of the element (93.1 %) occurs in a fraction comprising Hg bound to Fe/Mn oxi-hydroxides. Reduction of these oxides may affect Hg remobilisation and redistribution. Porewater profiles of dissolved trace metals were quite similar in the two sites, although significant differences could be observed for Al, Cu, Fe and Hg. The highest diffusive fluxes were observed for As, Fe and Mn. Mobility rates of several trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) were directly measured at the sediment–water interface. Results from benthic in situ incubation experiments showed increasing dissolved metal concentrations with time, resulting in higher fluxes for Cu, Fe, Hg, V and Zn in the most contaminated site. Conversely, fluxes of Mn, Ni and Pb were comparable between the two stations. The estimated flux of Hg (97 μg m?2 day?1) was the highest observed among similar experiments conducted in other highly contaminated Mediterranean coastal environments. Benthic fluxes could be partially explained by considering rates of organic matter remineralisation, dissolution of Fe/Mn oxy-hydroxides and metal speciation in sediments. Seasonal and spatial variation of biogeochemical parameters can influence metal remobilisation in the Mar Piccolo area. In particular, metals could be promptly remobilised as a consequence of oxygen depletion, posing a serious concern for the widespread fishing and mussel farming activities in the area.  相似文献   
13.
14.
We present a study of the seasonal and diurnal variability of carbon monoxide and selected volatile organic compounds in the Los Angeles area. Measurements were made during four different nine-day field campaigns in April/May, September, and November, 2007, and February, 2008, at the Mt. Wilson sampling site, which is located at an elevation of approximately 1700 m in the San Gabriel Mountains overlooking Pasadena and the Los Angeles basin. The results were used to characterize the Mt. Wilson site as a representative location for monitoring integrated Los Angeles basin emissions, and, by reference to carbon monoxide emissions, to estimate average annual emissions. The considerable seasonal variability of many hydrocarbons, in both their measured mixing ratios and their relationship to carbon monoxide, was indicative of variable source strengths. Most interestingly, perturbation of C4 hydrocarbon ratios suggested an enhanced role for chlorine chemistry during the month of September, likely as the result of Los Angeles’ coastal location. Such coastal influence was confirmed by observations of enhanced mixing ratios of marine halocarbons, as well as air mass back trajectories.  相似文献   
15.
Synthetic musks are ubiquitous contaminants in the environment. Compartmental distributions (dissolved, suspended particle associated and sedimentary) of the compounds throughout an axial estuarine transect and in coastal waters are reported. High concentrations of Galaxolide® (HHCB) and Tonalide® (AHTN) (987-2098 ng/L and 55-159 ng/L, respectively) were encountered in final effluent samples from sewage treatment plants (STPs) discharging into the Tamar and Plym Estuaries (UK), with lower concentrations of Celestolide® (ADBI) (4-13 ng/L), Phantolide® (AHMI) (6-9 ng/L), musk xylene (MX) (4-7 ng/L) and musk ketone (MK) (18-30 ng/L). Rapid dilution from the outfalls is demonstrated with resulting concentrations of HHCB spanning from 5 to 30 ng/L and those for AHTN from 3 to 15 ng/L. The other musks were generally not detected in the estuarine and coastal waters. The suspended particulate matter (SPM) and sedimentary profiles and compositions (HHCB:AHTN ratios) generally reflect the distribution in the water column with highest concentrations adjacent to sewage outfalls.  相似文献   
16.
The spatial variability of annual and seasonal precipitation in the conterminous land of Spain has been evaluated by using correlation decay distance analysis (CDD). The CDD analysis essentially explores how the correlation between neighbouring stations varies according to distance. We analysed CDD independently for the decades 1956–1965, 1966–1975, 1976–1985, 1986–1995, and 1996–2005 using only those stations with no missing values for each decade. To this end, 972, 1,174, 1,242, 773 and 695 complete series were used for each decade, respectively. In particular, for each station and decade, we calculated the threshold distance at which the common variance between target (i) and neighbour series is higher than 50 % (r 2  = 0.5) to evaluate whether current density of the climate data set captures the spatial variability of precipitation within the study area. Results indicate that, at an annual scale, neighbouring stations with 50 % of common variance are restricted on average to about 105 km, but this distance can vary from 28 to 251 km within the study area. The lowest variability is located to the SW and in winter, while the higher spatial variability is found to the north, in the Cantabrian area, and to the east, in the Mediterranean and Pyrenees, during summer. Our results suggest that current density of climate stations (those operating in 2005) is good enough to study precipitation variability at an annual scale for winter, spring and autumn, but not enough for summer.  相似文献   
17.
18.
Accurate discharge simulation is one of the most common objectives of hydrological modeling studies. However, a good simulation of discharge is not necessarily the result of a realistic simulation of hydrological processes within the catchment. We propose an evaluation framework that considers both discharge and water balance components as evaluation criteria for calibration of the Soil and Water Assessment Tool (SWAT). In this study, we integrated average annual values of surface runoff, groundwater flow, and evapotranspiration in the model evaluation procedure to constrain the selection of good model runs for the Little River Experimental Watershed in Georgia, United States. For evaluating water balance and discharge dynamics, the Nash‐Sutcliffe efficiency (NSE) and percent bias (PBIAS) were used. In addition, the ratio of root mean square error and standard deviation of measured data (RSR) was calculated for individual segments of the flow duration curve to identify the best model runs in terms of discharge magnitude. Our results indicate that good statistics for discharge do not guarantee realistic simulations of individual water balance components. Therefore, we recommend constraining the ranges of water balance components to achieve a more realistic simulation of the entire hydrological system, even if tradeoffs between good statistics for discharge simulations and reasonable amounts of the water balance components are unavoidable. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
19.
Correct field drift prediction is a key element in environmental risk assessment of spraying applications. A reduced order drift prediction model based on the diffusion–advection equation is presented. It allows fast assessment of the drift potential of specific ground boom applications under specific environmental wind conditions that obey the logarithmic wind profile. The model was calibrated based on simulations with a validated Computational Fluid Dynamics (CFD) model. Validation of both models against 38 carefully conducted field experiments is successfully performed for distances up to 20 m from the field edge, for spraying on flat pasture land. The reduced order model succeeded in correct drift predictions for different nozzle types, wind velocities, boom heights and spray pressures. It used 4 parameters representing the physical aspects of the drift cloud; the height of the cloud at the field edge, the mass flux crossing the field edge, the settling velocity of the droplets and the turbulence. For the parameter set and range considered, it is demonstrated for the first time that the effect of the droplet diameter distribution of the different nozzle types on the amount of deposition spray drift can be evaluated by a single parameter, i.e., the volume fraction of droplets with a diameter smaller than 191 μm. The reduced order model can be solved more than 4 orders of magnitude faster than the comprehensive CFD model.  相似文献   
20.
Soil structure critically affects the hydrological behaviour of soils. In this paper, we examined the impact of areal heterogeneity of hydraulic properties of a structured soil on soil ensemble behaviour for various soil water flow processes with different top boundary conditions (redistribution and drainage plus evaporation and infiltration). Using a numerical solution of the Richards' equation in a stochastic framework, the ensemble characteristics and flow dynamics were studied for drying and wetting processes observed during a time interval of ten days when a series of relatively intense rainfall events occurred. The effects of using unimodal and bimodal interpretative models of hydraulic properties on the ensemble hydrological behaviour of the soil were illustrated by comparing predictions to mean water contents measured over time in several sites at field scale. Although the differences between unimodal and bimodal fitting are not significant in terms of goodness of fit, the differences in process predictions are considerable with the bimodal soil simulating water content measurements much better than unimodal soil. We also investigated the relative contribution of the soil variability of each parameter on the variance of the water contents obtained as the main output of the stochastic simulations. The variability of the structural parameter, weighting the two pore space fractions in the bimodal interpretative model, has the largest contribution to water content variance. The contribution of each parameter depends only partly on the coefficient of variation, much more on the sensitivity of the model to the parameters and on the flow process being observed. We observed that the contribution of the retention parameters to uncertainty increases during drainage processes; the opposite occurs with the hydraulic conductivity parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号