Objective: Suffering a stroke might lead to permanent cognitive and/or physical impairment. It has been shown that these impairments could have an impact on an individual's fitness to drive. In Sweden, as in many other countries, there are regulations on driving cessation post-stroke. Information on driving cessation should be given to all patients and noted in the journal. The present study sought to determine physician's compliance to driving regulations post-stroke as well as follow-up and gender aspects.
Method: A retrospective study of medical records on stroke patients was carried out. The study covered all of the medical records on stroke incidents (n = 342) during a year at a typical medium to large-sized hospital in Sweden.
Results: A journal entry on driving cessation post-stroke was missing in 81% of the medical records. Only 2% of the patients were scheduled for a follow-up meeting specifically concerning fitness to drive. Significantly more men than women had an entry on driving in the journal.
Conclusions: We conclude that the Swedish regulations on driving cessation post-stroke were not followed at the participating hospital. It is crucial that all stroke patients receive information on driving cessation because their condition might affect fitness to drive. Analysis of follow-up records showed that there was no consistent method for assessment of a patient's fitness to drive. There was also a gender difference in the material, which warrants further investigation. 相似文献
Ongoing marine monitoring programs are seldom designed to detect changes in the environment between different years, mainly due to the high number of samples required for a sufficient statistical precision. We here show that pooling over time (time integration) of seasonal measurements provides an efficient method of reducing variability, thereby improving the precision and power in detecting inter-annual differences. Such data from weekly environmental sensor profiles at 21 stations in the northern Bothnian Sea was used in a cost-precision spatio-temporal allocation model. Time-integrated averages for six different variables over 6 months from a rather heterogeneous area showed low variability between stations (coefficient of variation, CV, range of 0.6–12.4%) compared to variability between stations in a single day (CV range 2.4–88.6%), or variability over time for a single station (CV range 0.4–110.7%). Reduced sampling frequency from weekly to approximately monthly sampling did not change the results markedly, whereas lower frequency differed more from results with weekly sampling. With monthly sampling, high precision and power of estimates could therefore be achieved with a low number of stations. With input of cost factors like ship time, labor, and analyses, the model can predict the cost for a given required precision in the time-integrated average of each variable by optimizing sampling allocation. A following power analysis can provide information on minimum sample size to detect differences between years with a required power. Alternatively, the model can predict the precision of annual means for the included variables when the program has a pre-defined budget. Use of time-integrated results from sampling stations with different areal coverage and environmental heterogeneity can thus be an efficient strategy to detect environmental differences between single years, as well as a long-term temporal trend. Use of the presented allocation model will then help to minimize the cost and effort of a monitoring program. 相似文献
A chemical absorption, post-combustion CO2 capture unit is simulated and an exergy analysis has been conducted, including irreversibility calculations for all process units. By pinpointing major irreversibilities, new proposals for efficient energy integrated chemical absorption process are suggested. Further, a natural-gas combined-cycle power plant with a CO2 capture unit has been analyzed on an exergetic basis. By defining exergy balances and black-box models for plant units, investigation has been made to determine effect of each unit on the overall exergy efficiency. Simulation of the chemical absorption plant was done using UniSim Design software with Amines Property Package. For natural-gas combined-cycle design, GT PRO software (Thermoflow, Inc.) has been used. For exergy calculations, spreadsheets are created with Microsoft Excel by importing data from UniSim and GT PRO. Results show the exergy efficiency of 21.2% for the chemical absorption CO2 capture unit and 67% for the CO2 compression unit. The total exergy efficiency of CO2 capture and compression unit is 31.6%. 相似文献
Concern about nitrogen loads in marine environments has drawn attention to the existence and possible causes of long-term trends in nitrogen transport in rivers. The present study was based on data from the Swedish environmental monitoring programme for surface water quality; the continuity of these data is internationally unique. A recently developed semiparametric method was employed to study the development of relationships between runoff and river transport of nitrogen since 1971; the observed relationships were then used to produce time series of flow-normalised transports for 66 sites in 39 river basins. Subsequent statistical analyses of flow-normalised data revealed only few significant downward trends (p 0.05) during the time period 1971–1994, and the most pronounced of these downward trends were caused by reduced point emissions of nitrogen. The number of significant upward trends was substantially larger (15 for total-N and 18 for NO3-N). Closer examination of obtained results revealed the following: (i) the most pronounced upward trends were present downstream of lakes, and (ii) observed increases in nitrogen transport coincided in time and space with reduced point emissions of phosphorus or organic matter. This indicated that changes in the retention of nitrogen in lakes were responsible for the upward nitrogen trends. The hypothesis that nitrogen saturation of forest soils has caused a general increase in the riverine export of nitrogen from forested catchments in Sweden was not confirmed. Neither did the results indicate that improved agricultural practices have reduced the export of nitrogen from agricultural catchments. 相似文献
Stratigraphic records from peatlands suggest that the shift from a rich fen (calcareous fen) to an ombrotrophic bog can occur rapidly. This shift constitutes a switch from a species-rich ecosystem to a species-poor one with greater carbon storage. In this process, the invasion and expansion of acidifying bog species of Sphagnum (peat mosses) play a key role. To test under what conditions an acidifying bog species could invade a rich fen, we conducted three experiments, contrasting the bog species S. fucsum with the rich-fen species S. warnstorfii and S. teres. We first tested the effect of calcareous water by growing the three species at different constant height above the water table (HWT; 2, 7, and 14 cm) in a rich-fen pool and measured maximum photosynthetic rate and production and difference in length growth as an indicator of competition. In none of the species was the photosynthetic capacity negatively affected when placed at low HWT, but S. fuscum was a weaker competitor at low HWT. In our second experiment we transplanted the three species into microhabitats with different and naturally varying HWT in a rich fen. Here, S. fuscum nearly ceased to photosynthesize when transplanted to low HWT (brown moss carpet), while it performed similarly to the two rich-fen species at the intermediate level (S. warnstorfii hummock level). In contrast to S. fuscum, the rich-fen sphagna performed equally well in both habitats. The brown moss carpet was seasonally flooded, and in our third experiment we found that S. fuscum, but not S. teres, was severely damaged when submerged in rich-fen water. Our results suggest two thresholds in HWT affecting the ecosystem switch: one level that reduces the risk of submergence and a higher one that makes bog sphagna competitive against the rich-fen species. 相似文献
The effect of zinc on soil nitrification and composition of the microbial community in soil was investigated using a full factorial experiment with five zinc concentrations and four levels of biological complexity (microbes only, microbes and earthworms (Eisenia fetida), microbes and Italian ryegrass (Lolium multiflorum var. Macho), and microbes, ryegrass and earthworms). After 6 weeks of exposure, the activity of soil nitrifying bacteria was measured and the microbial community structure was characterized by phospholipid fatty acid (PLFA) analysis. Soil nitrification and several PLFA markers were significantly influenced by either zinc addition and/or the presence of earthworms or ryegrass, and one of the most pronounced changes was the increase of fungi and decrease of bacteria with increasing concentrations of zinc. Of particular interest, however, was the potential interaction between the presence of plants and/or earthworms and the effect of zinc, which the factorial study design allowed us to explore. Such an effect was observed in two cases: Earthworms reduced the positive effect of zinc on the fungal biomass (ANOVA, p=0.03), and the effect of earthworms on the soil nitrification activity depended on zinc concentration (ANOVA, p<0.05). The effect of earthworm presence was not very large, but it does show that multispecies tests might give information about metal toxicity or bioavailability that cannot be predicted from single-species tests. 相似文献
The effects of different process temperatures (40, 55, and 67 degrees C) during composting of source-separated household waste were studied in a 200 L compost reactor at an oxygen concentration of 16%. The overall decomposition measured as carbon mineralization, decomposition of different carbon constituents, and the dynamics of nitrogen mineralization and the microbial community, are reported. Ammonia emissions at 67 degrees C were more than double those at lower temperatures, and they were lowest at 40 degrees C. The decomposition rate, measured as CO2 emission, was highest at 55 degrees C. Decomposition of crude fat was slower at 40 degrees C than at 55 and 67 degrees C. The peak in microbial biomass was largest in the run at 40 degrees C, where substantial differences were seen in the microbial community structure and succession compared to thermophilic temperatures. Biowaste composting can be optimized to obtain both a high decomposition rate and low ammonia emissions by controlling the process at about 55 degrees C in the initial, high-rate stage. To reduce ammonia emissions it seems worthwhile to reduce the temperature after an initial high-temperature stage. 相似文献
Environmental monitoring of landscapes is of increasing interest. To quantify landscape patterns, a number of metrics are used, of which Shannon’s diversity, edge length, and density are studied here. As an alternative to complete mapping, point sampling was applied to estimate the metrics for already mapped landscapes selected from the National Inventory of Landscapes in Sweden (NILS). Monte-Carlo simulation was applied to study the performance of different designs. Random and systematic samplings were applied for four sample sizes and five buffer widths. The latter feature was relevant for edge length, since length was estimated through the number of points falling in buffer areas around edges. In addition, two landscape complexities were tested by applying two classification schemes with seven or 20 land cover classes to the NILS data. As expected, the root mean square error (RMSE) of the estimators decreased with increasing sample size. The estimators of both metrics were slightly biased, but the bias of Shannon’s diversity estimator was shown to decrease when sample size increased. In the edge length case, an increasing buffer width resulted in larger bias due to the increased impact of boundary conditions; this effect was shown to be independent of sample size. However, we also developed adjusted estimators that eliminate the bias of the edge length estimator. The rates of decrease of RMSE with increasing sample size and buffer width were quantified by a regression model. Finally, indicative cost–accuracy relationships were derived showing that point sampling could be a competitive alternative to complete wall-to-wall mapping. 相似文献
The airway irritation of a reaction mixture of R-(+)-limonene and ozone was evaluated by a mouse bioassay in which sensory irritation, bronchoconstriction and pulmonary irritation were measured. Significant sensory irritation (33% reduction of mean respiratory rate) was observed by dynamic exposure of the mice, during 30 min, to a ca. 16 s old reaction mixture of ozone and limonene. The initial concentrations were nominally 4 ppm O3 and 48 ppm limonene. After reaction, the residual O3 was <0.03 ppm. Conventional analytical chemical methods were used to measure the formation of readily identified and stable products. Besides the expected products, 1-methyl-4-acetylcyclohexene (AMCH), 3-isopropenyl-6-oxoheptanal (IPOH), formaldehyde and formic acid, autooxidation products of limonene and a series of compounds (i.e., acetone, acrolein and acetic acid), which may or may not be artefacts, were identified. Addition of the sensory irritation effects of the residual reactants and all the identified compounds could not explain the observed sensory irritation effect. This suggests that one or more strong airway irritants were formed. Since limonene is common in the indoor air, and ozone is infiltrated from outdoors and/or produced indoors (e.g., by photocopiers), such oxidation reactions may be relevant for indoor air quality. 相似文献