首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   2篇
  国内免费   2篇
安全科学   7篇
废物处理   5篇
环保管理   7篇
综合类   9篇
基础理论   21篇
污染及防治   90篇
评价与监测   4篇
社会与环境   6篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   33篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   6篇
  2008年   9篇
  2007年   15篇
  2006年   8篇
  2005年   9篇
  2004年   4篇
  2003年   2篇
  2002年   6篇
  2001年   7篇
  2000年   15篇
  1999年   2篇
  1996年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
141.
An apparent increasing trend in the summer concentrations of particulate sulfur at Shenandoah (for the time period 1982-1995) and at Great Smoky Mountains (for the time period 1984-1995) has been pointed out by some researchers. Others have suggested that these increasing trends may be an analytical artifact resulting from the switch from the Stacked Filter Units (SFU) measurement system to the IMPROVE (Interagency Monitoring of Protected Visual Environments) measurement system that occurred during the winter of 1987. To obtain a better understanding of the effect of the protocol change, we investigate the changes in the seasonal averages of sulfur concentrations for successive pairs of years for the period 1980-1996 for about 20 national park sites in the United States. For the period 1980-1987, we use sulfur data from the old (SFU) database and for the period 1988-1996, we use the IMPROVE database. Changes from one year to the next similar to that between 1987 and 1988 occurred during other years and seasons suggesting that chance causes alone could perhaps explain it, the degree to which chance could have caused the changes was measured using the permutation test for matched. At the very least, additional information such as side by side readings using SFU and IMPROVE measurement methods, may be needed to better understand any systematic effect in the sulfur measurements that may be ascribable to the protocol change.  相似文献   
142.
The goal of the Regional Haze Rule (RHR) is to return visibility in class I areas (CIAs) to natural levels, excluding weather-related events, by 2064. Whereas visibility, the seeing of scenic vistas, is a near instantaneous and sight-path-dependent phenomenon, reasonable progress toward the RHR goal is assessed by tracking the incremental changes in 5-yr average visibility. Visibility is assessed using a haze metric estimated from 24-hr average aerosol measurements that are made at one location representative of the CIA. It is assumed that, over the 5-yr average, the aerosol loadings and relative humidity along all of the site paths are the same and can be estimated from the 24-hr measurements. It is further assumed that any time a site path may be obscured by weather (e.g., clouds and precipitation), there are other site paths within the CIA that are not. Therefore, when calculating the haze metric, sampling days are not filtered for weather conditions. This assumption was tested by examining precipitation data from multiple monitors for four CIAs. It is shown that, in general, precipitation did not concurrently occur at all monitors for a CIA, and precipitation typically occurred 3-8 hr or less in a day. In a recent paper in this journal, Ryan asserts that the haze metric should include contributions from precipitation and conducted a quantitative assessment incorrectly based on the assumption that the Optec NGN-2 nephelometer measurements include the effects of precipitation. However, these instruments are programmed to shut down during rain events, and any data logged are in error. He further assumes that precipitation occurs as often on the haziest days as the clearest days and that precipitation light scattering (bprecip) is independent of geographic location and applied an average bprecip derived for Great Smoky Mountains to diverse locations including the Grand Canyon. Both of these assumptions are shown to be in error.  相似文献   
143.
The Virtual Aquifer approach is used in this study to assess the uncertainty involved in the estimation of contaminant plume lengths in heterogeneous aquifers. Contaminant plumes in heterogeneous two-dimensional conductivity fields and subject to first order and Michaelis-Menten (MM) degradation kinetics are investigated by the center line method. First order degradation rates and plume lengths are estimated from point information obtained along the plume center line. Results from a Monte-Carlo investigation show that the estimated rate constant is highly uncertain and biased towards overly high values. Uncertainty and bias amplify with increasing heterogeneity up to maximum values of one order of magnitude. Calculated plume lengths reflect this uncertainty and bias. On average, plume lengths are estimated to about 50% of the true plume length. When plumes subject to MM degradation kinetics are investigated by using a first order rate law, an additional error is introduced and uncertainty as well as bias increase, causing plume length estimates to be less than 40% of the true length. For plumes with MM degradation kinetics, therefore, a regression approach is used which allows the determination of the MM parameters from center line data. Rate parameters are overestimated by a factor of two on average, while plume length estimates are about 80% of the true length. Plume lengths calculated using the MM parameters are thus closer to the correct length, as compared to the first order approximation. This approach is therefore recommended if field data collected along the center line of a plume give evidence of MM kinetics.  相似文献   
144.
The main topic of probabilistic modelling is to introduce the subject of variability into exposure assessment. Instead of fixed parameters (means, percentiles), each variable will be expressed in the mathematical form of a distribution of their realisations in the population of interest. The technique of Monte Carlo simulations also makes complex models computable. The results are expressions of variation and uncertainty in exposure assessment. The text discusses the principle and new methodical efforts in modelling: The fit of input distributions, the technical realizations and possibilities in documentation of the results.  相似文献   
145.
The Bode catchment (Germany) shows strong land use gradients from forested parts of the National Park (23 % of total land cover) to agricultural (70 %) and urbanised areas (7 %). It is part of the Terrestrial Environmental Observatories of the German Helmholtz association. We performed a biogeochemical analysis of the entire river network. Surface water was sampled at 21 headwaters and at ten downstream sites, before (in early spring) and during the growing season (in late summer). Many parameters showed lower concentrations in headwaters than in downstream reaches, among them nutrients (ammonium, nitrate and phosphorus), dissolved copper and seston dry mass. Nitrate and phosphorus concentrations were positively related to the proportion of agricultural area within the catchment. Punctual anthropogenic loads affected some parameters such as chloride and arsenic. Chlorophyll a concentration and total phosphorus in surface waters were positively related. The concentration of dissolved organic carbon (DOC) was higher in summer than in spring, whereas the molecular size of DOC was lower in summer. The specific UV absorption at 254 nm, indicating the content of humic substances, was higher in headwaters than in downstream reaches and was positively related to the proportion of forest within the catchment. CO2 oversaturation of the water was higher downstream compared with headwaters and was higher in summer than in spring. It was correlated negatively with oxygen saturation and positively with DOC concentration but negatively with DOC quality (molecular size and humic content). A principle component analysis clearly separated the effects of site (44 %) and season (15 %), demonstrating the strong effect of land use on biogeochemical parameters.  相似文献   
146.
Biochar is the product of pyrolysis produced from feedstock of biological origin. Due to its aromatic structure and long residence time, biochar may enable long-term carbon sequestration. At the same time, biochar has the potential to improve soil fertility and reduce greenhouse gas (GHG) emissions from soils. However, the effect of biochar application on GHG fluxes from soil must be investigated before recommendations for field-scale biochar application can be made. A laboratory experiment was designed to measure carbon dioxide (CO) and nitrous oxide (NO) emissions from two Irish soils with the addition of two different biochars, along with endogeic (soil-feeding) earthworms and ammonium sulfate, to assist in the overall evaluation of biochar as a GHG-mitigation tool. A significant reduction in NO emissions was observed from both low and high organic matter soils when biochars were applied at rates of 4% (w/w). Earthworms significantly increased NO fluxes in low and high organic matter soils more than 12.6-fold and 7.8-fold, respectively. The large increase in soil NO emissions in the presence of earthworms was significantly reduced by the addition of both biochars. biochar reduced the large earthworm emissions by 91 and 95% in the low organic matter soil and by 56 and 61% in the high organic matter soil (with and without N fertilization), respectively. With peanut hull biochar, the earthworm emissions reduction was 80 and 70% in the low organic matter soil, and only 20 and 10% in the high organic matter soil (with and without N fertilization), respectively. In high organic matter soil, both biochars reduced CO efflux in the absence of earthworms. However, soil CO efflux increased when peanut hull biochar was applied in the presence of earthworms. This study demonstrated that biochar can potentially reduce earthworm-enhanced soil NO and CO emissions. Hence, biochar application combined with endogeic earthworm activity did not reveal unknown risks for GHG emissions at the pot scale, but field-scale experiments are required to confirm this.  相似文献   
147.
This research investigated whether environmental conditions, biological fish characteristics and anthropogenic impacts influenced mercury (Hg) assimilation into the muscle tissue of two fish species from two Brazilian bays, Ilha Grande Bay and Guanabara Bay. Fish and superficial water were collected in different periods. Hg was determined by CV-AAS. Methylmercury (MeHg) was identified and quantified by ECD-GC. Chlorophyll a concentrations in the water column indicated that Ilha Grande Bay and Guanabara Bay were oligotrophic and eutrophic, respectively. Hg in fish ranged from 2.10 to 870.17 μg kg?1 dry wt. in Ilha Grande Bay and 40.90 to 809.24 μg kg?1 dry wt. in Guanabara Bay. Slight differences were found between the length-normalized Hg concentrations and its percent of Hg in a voracious predator from the bays. In Guanabara Bay, where the presence of a chlor-alkali plant causes Hg input, the iliophagous fish species showed the highest length-normalized Hg concentrations and the voracious predator the lowest. Iliophagous fish is consumed by voracious predator and, consequently, acts as their MeHg food supply. Iliophagous fish from Ilha Grande Bay presented a higher percent of MeHg (80.0 %) than specimens from Guanabara Bay (54.5 %). This fact suggests that more MeHg was transferred from iliophagous fish to voracious predator in Ilha Grande Bay. At Guanabara Bay, the bioproduction is greater than that at Ilha Grande Bay, presenting the highest biomass in it ecosystem, which may subsequently dilute Hg and reduce its availability to the biota; i.e., influencing in Hg and MeHg availability throughout the food chain. Consequently, more MeHg is available in the aquatic environment of Ilha Grande Bay.  相似文献   
148.
The U.S. Environmental Protection Agency (EPA) and the federal land management community (National Park Service, United States Fish and Wildlife Service, United States Forest Service, and Bureau of Land Management) operate extensive particle speciation monitoring networks that are similar in design but are operated for different objectives. Compliance (mass only) monitoring is also carried out using federal reference method (FRM) criteria at approximately 1000 sites. The Chemical Speciation Network (CSN) consists of approximately 50 long-term-trend sites, with about another 250 sites that have been or are currently operated by state and local agencies. The sites are located in urban or suburban settings. The Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network consists of about 181 sites, approximately 170 of which are in nonurban areas. Each monitoring approach has its own inherent monitoring limitations and biases. Determination of gravimetric mass has both negative and positive artifacts. Ammonium nitrate and other semivolatiles are lost during sampling, whereas, on the other hand, measured mass includes particle-bound water. Furthermore, some species may react with atmospheric gases, further increasing the positive mass artifact. Estimating aerosol species concentrations requires assumptions concerning the chemical form of various molecular compounds, such as nitrates and sulfates, and organic material and soil composition. Comparing data collected in the various monitoring networks allows for assessing uncertainties and biases associated with both negative and positive artifacts of gravimetric mass determinations, assumptions of chemical composition, and biases between different sampler technologies. All these biases are shown to have systematic seasonal characteristics. Unaccounted-for particle-bound water tends to be higher in the summer, as does nitrate volatilization. The ratio of particle organic mass divided by organic carbon mass (Roc) is higher during summer and lower during the winter seasons in both CSN and IMPROVE networks, and Roc is lower in urban than non-urban environments.  相似文献   
149.
This research tested whether limnological conditions, biological characteristics of fish and anthropogenic impacts influenced the assimilation of methylmercury into the muscle of a sedentary piscivorous fish, Cichla spp., from three rivers (Negro, Madeira, Tapajós) and two hydroelectric reservoirs (Balbina, Tucuruí) within the Brazilian Amazon. Methylmercury in this fish ranged from 0.04 to 1.43microgg(-1) w.w. across sites. No significant differences were observed in the methylmercury concentrations between males and females, or for different morphotypes of this species. Positive correlations were found between methylmercury and fish body weight. No differences were found between the weight normalized methylmercury (MeHg) concentrations or its percent of total mercury in fish from the three rivers; weight normalized MeHg was highest in one of the two reservoirs. In Rio Tapajós, where gold mining and deforestation cause high water turbidity, fish showed the highest MeHg and concentrations were different across the four sites examined. In all sampling areas, the %MeHg was found to be higher than 70.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号