首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11979篇
  免费   109篇
  国内免费   89篇
安全科学   337篇
废物处理   446篇
环保管理   1642篇
综合类   2137篇
基础理论   3142篇
环境理论   8篇
污染及防治   3012篇
评价与监测   737篇
社会与环境   631篇
灾害及防治   85篇
  2022年   103篇
  2021年   99篇
  2020年   80篇
  2019年   93篇
  2018年   163篇
  2017年   142篇
  2016年   225篇
  2015年   196篇
  2014年   272篇
  2013年   885篇
  2012年   361篇
  2011年   507篇
  2010年   411篇
  2009年   482篇
  2008年   522篇
  2007年   524篇
  2006年   459篇
  2005年   428篇
  2004年   354篇
  2003年   377篇
  2002年   356篇
  2001年   477篇
  2000年   347篇
  1999年   210篇
  1998年   134篇
  1997年   157篇
  1996年   163篇
  1995年   191篇
  1994年   194篇
  1993年   160篇
  1992年   132篇
  1991年   169篇
  1990年   163篇
  1989年   157篇
  1988年   115篇
  1987年   114篇
  1986年   118篇
  1985年   91篇
  1984年   109篇
  1983年   110篇
  1982年   118篇
  1981年   109篇
  1980年   96篇
  1979年   113篇
  1978年   73篇
  1977年   77篇
  1975年   76篇
  1973年   72篇
  1972年   65篇
  1967年   67篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
751.
A field dissipation study was conducted to evaluate the pre-harvest interval (PHI) and processing factor (PF) for kresoxim methyl (Ergon 44.3 SC) residues in grapes and during raisin making process at recommended dose (RD) and double the recommended dose (DRD). Kresoxim methyl residues dissipated following 1st-order kinetics with a half-life of 10 and 18 days at RD and DRD, respectively. The PHIs with respect to the European Union maximum residue limit (EU-MRL) of 1 mg kg?1 for grapes were 13 and 30 days at RD and DRD, respectively. The degradation data during grape to raisin making process were best fitted to nonlinear 1st?+?1st-order kinetics with a half-life ranging between 4 and 8 days for both shade drying and with raisin dryer at different doses. The PFs were 1.19 and 1.24 with shade drying and 1.09 and 1.10 with raisin dryer, respectively, which indicates concentration of the residues during raisin making process. The dietary exposure of kresoxim methyl on each sampling day was less than the respective maximum permissible intake both at RD and DRD. The residues of kresoxim methyl in market samples of grapes and raisins were well below the EU-MRL and were also devoid of any risk of acute toxicity related to dietary exposure.  相似文献   
752.
The study was carried out to understand the variability in phytoplankton production (Chlorophyll a) and mesozooplankton diversity from two different shallow coastal regions of south Andaman viz. Port Blair Bay (PBB), the only real urban area among the islands and Mahatma Gandhi Marine National Park, a Marine Protected Area (MPA) at Wandoor. Seasonal sampling was carried out during the Northeast monsoon (NEM—November 2005), Intermonsoon (IM—April 2006), and Southwest monsoon (SWM—August 2006). Significant (P?<?0.05) seasonal variation was observed in the environmental variables at both the regions. Higher average chlorophyll a (Chl. a) and mesozooplankton standing stock were observed at PBB compared to MPA, but the seasonal variation observed was marginal at both the study areas. Chl. a showed a steep increasing gradient from outer to the inner regions of the PBB. The number of zooplankton taxa recorded at both areas was quite similar, but marked differences were noticed in their relative contribution to the total abundance. Eventhough the Copepoda dominated at both the areas, the non-copepod taxa differed significantly between the regions. Dominance of carnivores such as siphonophores and chaetognaths were noticed at PBB, while filter feeders such as appendicularians and decapod larvae were more abundant at MPA. A total of 20 and 21 copepod families was recorded from PBB and MPA, respectively. Eleven species of chaetognaths were observed as common at both areas. Larval decapods were found to be predominant at MPA with 20 families; whereas, at PBB, only 12 families were recorded. In the light of the recent reports on various changes occurring in the coastal waters of the Andaman Islands, it is suspected that the difference in Chl. a as well as the mesozooplankton standing stock and community structure observed between the two study areas may be related to the various anthropogenic events influencing the coastal waters.  相似文献   
753.
Metal release from serpentine soils in Sri Lanka   总被引:2,自引:0,他引:2  
Ultramafic rocks and their related soils (i.e., serpentine soils) are non-anthropogenic sources of metal contamination. Elevated concentrations of metals released from these soils into the surrounding areas and groundwater have ecological-, agricultural-, and human health-related consequences. Here we report the geochemistry of four different serpentine soil localities in Sri Lanka by coupling interpretations garnered from physicochemical properties and chemical extractions. Both Ni and Mn demonstrate appreciable release in water from the Ussangoda soils compared to the other three localities, with Ni and Mn metal release increasing with increasing ionic strengths at all sites. Sequential extraction experiments, utilized to identify “elemental pools,” indicate that Mn is mainly associated with oxides/(oxy)hydroxides, whereas Ni and Cr are bound in silicates and spinels. Nickel was the most bioavailable metal compared to Mn and Cr in all four soils, with the highest value observed in the Ussangoda soil at 168?±?6.40 mg kg?1 via the 0.01-M CaCl2 extraction. Although Mn is dominantly bound in oxides/(oxy)hydroxides, Mn is widely dispersed with concentrations reaching as high as 391 mg kg?1 (Yudhaganawa) in the organic fraction and 49 mg kg?1 (Ussangoda) in the exchangeable fraction. Despite Cr being primarily retained in the residual fraction, the second largest pool of Cr was in the organic matter fraction (693 mg kg?1 in the Yudhaganawa soil). Overall, our results support that serpentine soils in Sri Lanka offer a highly labile source of metals to the critical zone.  相似文献   
754.
This paper deals with a real-world decision-aiding problem for zoning the risk of erosion, total suspended solids emissions, and ecological consequences of their transfers towards the streams. One of these consequences is the decrease of fishes into the streams in agricultural watersheds, because of the clogging of spawning areas. Given the multiple criteria nature of the problem, the originality of our research is to adapt a new decision-aiding sorting method, ELECTRE TRI-C, for identifying risk zones in rural areas, where measures must be taken. The developed model was applied in a small watershed (Low Normandy, France) where the objective was to assess the most appropriate intervention for protecting the reproduction habitat of the salmonid fishes. Agricultural parcels were evaluated on multiple criteria for grouping them into four risk categories, which are related to risk levels as well as priorities on the improvement works. The decision-aiding sorting model is co-constructed, within a constructive approach, through an interaction process between decision-aiding analysts, environmental experts, and local actors for improving transparency and communication on the results. This model is linked with a geographical information system (GIS) for assessing a set of criteria and the visualization of the farming parcels along with their type of intervention they should be submitted to best practices. The assignment results were validated by the environmental experts. These results have a strong impact on the agricultural practices of the farmers into the watersheds. The model proposed in this paper can be considered as a useful decision aid tool in any regions for implementing public agricultural and environmental policies for protecting the ecological areas.  相似文献   
755.
In order to identify the viable option of tillage practices in rice–maize–cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2–C emissions were quantified in between plants and rows throughout the year in rice–maize–cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2–C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4–78.1, 37.1–128.1, and 28.6–101.2 mg m?2 h?1 under CT and 10.7–60.3, 17.3–99.1, and 17.2–79.1 mg m?2 h?1 under MT in rice, maize, and cowpea, respectively. The CO2–C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2–C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2–C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and heterotrophic microbial populations were in the order of maize?>?cowpea?>?rice, irrespective of the tillage treatments. Environmental sustainability point of view, minimum tillage practices in rice–maize–cowpea cropping system in tropical low land soil could be adopted to minimize CO2–C emission, sustain yield, and maintain soil health.  相似文献   
756.
Heavy metals are persistent environmental contaminants, and transport of metals into the environment poses a threat to ecosystems, as plants and wildlife are susceptible to long-term exposure, bioaccumulation, and potential toxicity. We investigated the distribution and cascading extent of heavy metal accumulation in southwestern song sparrows (Melospiza melodia fallax), a resident riparian bird species that occurs along the US/Mexico border in Arizona’s upper Santa Cruz River watershed. This study had three goals: (1) quantify the degree of heavy metal accumulation in sparrows and determine the distributional patterns among study sites, (2) compare concentrations of metals found in this study to those found in studies performed prior to a 2009 international wastewater facility upgrade, and (3) assess the condition of song sparrows among sites with differing potential levels of exposure. We examined five study sites along with a reference site that reflect different potential sources of contamination. Body mass residuals and leukocyte counts were used to assess sparrow condition. Birds at our study sites typically had higher metal concentrations than birds at the reference site. Copper, mercury, nickel, and selenium in song sparrows did exceed background levels, although most metals were below background concentrations determined from previous studies. Song sparrows generally showed lower heavy metal concentrations compared to studies conducted prior to the 2009 wastewater facility upgrade. We found no cascading effects as a result of metal exposure.  相似文献   
757.
758.
In order to understand the complex transport phenomena in a passive direct methanol fuel cell (DMFC), a theoretical model is essential. The analytical model provides a computationally efficient framework with a clear physical meaning. For this, a non-isothermal, analytical model for the passive DMFC has been developed in this study. The model considers the coupled heat and mass transport along with electrochemical reactions. The model is successfully validated with the experimental data. The model accurately describes the various species transport phenomena including methanol crossover and water crossover, heat transport phenomena, and efficiencies related to the passive DMFC. It suggests that the maximum real efficiency can be achieved by running the cell at low methanol feed concentration and moderate current density. The model also accurately predicts the effect of various operating and geometrical parameters on the cell performance such as methanol feed concentration, surrounding temperature, and polymer electrolyte membrane thickness. The model predictions are in accordance with the findings of the other researchers. The model is rapidly implementable and can be used in real-time simulation and control of the passive DMFC. This comprehensive model can be used for diagnostic purpose as well.  相似文献   
759.
Pollution has taken on a global dimension, and the effects are most obvious in developing countries. The effects take a toll on human health, animals, and vegetation, as well as on soil, air, and water quality. The objective of this article is to discuss the current relationships among pollution, environmental quality, and human health within the frame of anthropogenic activities in developing countries. In addition to personal observations, we review relevant literature on conditions throughout the developing world and case studies on conditions and activities in Nigeria. Key findings show the significant, adverse contributions to human health and environmental risk from current waste generation and handling practices, indoor and outdoor air pollution, wastewater and effluent generation and disposal, the hazardous nature and pollution potential of wastes, and the human behaviors that contribute to pollution in developing countries. There is an urgent need to create awareness among the various segments of society of the human health hazards posed by pollution as well as a need for the comprehensive development and enforcement of appropriate policies to prevent a descent into an abyss of deteriorating human and environmental health.  相似文献   
760.
Leaching of nitrogen (N) after forest fertilization has the potential to pollute ground and surface water. The purpose of this study was to quantify N leaching through the primary rooting zone of N-limited Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forests the year after fertilization (224 kg N ha(-1) as urea) and to calculate changes in the N pools of the overstory trees, understory vegetation, and soil. At six sites on production forests in the Hood Canal watershed, Washington, tension lysimeters and estimates of the soil water flux were used to quantify the mobilization and leaching of NO(3)-N, NH(4)-N, and dissolved organic nitrogen below the observed rooting depth. Soil and vegetation samples were collected before fertilization and 1 and 6 mo after fertilization. In the year after fertilization, the total leaching beyond the primary rooting zone in excess of control plots was 4.2 kg N ha(-1) (p = 0.03), which was equal to 2% of the total N applied. The peak NO(3)-N concentration that leached beyond the rooting zone of fertilized plots was 0.2 mg NO(3)-N L(-1). Six months after fertilization, 26% of the applied N was accounted for in the overstory, and 27% was accounted for in the O+A horizon of the soil. The results of this study indicate that forest fertilization can lead to small N leaching fluxes out of the primary rooting zone during the first year after urea application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号