首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
废物处理   1篇
环保管理   3篇
综合类   3篇
基础理论   1篇
污染及防治   3篇
评价与监测   3篇
社会与环境   6篇
  2021年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有20条查询结果,搜索用时 62 毫秒
11.
The use of intensive forestry on part of the forested area in Sweden increases the production of forest biomass and enables an increased use of such biomass to mitigate climate change. However, with increasing conflicting interests in forests and forestry, the success of such a strategy depends on the public acceptance. In this paper, the results of a mail survey show that although a majority of the general public in Sweden supports measures to increase forest growth, they oppose the use of intensive forestry practices such as the cultivation of exotic tree species, clones, and forest fertilization. The acceptance of such practices is mainly influenced by the perceptions of their environmental consequences. Public acceptance was highest for forest fertilization, whereas clone cultivation was the least accepted practice.  相似文献   
12.
Use of wood frames from sustainable forestry instead of non-wood frames in multi-storey buildings can reduce primary energy use and carbon dioxide emissions in construction. However, construction actors might have different perceptions towards wood frames than towards steel and concrete frames. Such perceptions may influence the actors’ decision to adopt wood frames. In this study we use a web-based questionnaire to assess Swedish architects’ perceptions, attitudes and interest towards steel, concrete and wood frames in multi-storey buildings (n = 412). Results indicate that the responding architects find concrete the most suitable frame material in buildings of 3-8 storeys, mainly because of the performance of concrete with regards to the engineering aspects (e.g. stability and fire safety) that were considered important in the choice of frame material. Although wood is considered the least suitable frame material, the overall attitude towards, and interest in, using wood is positive and related to the perceived environmental benefits of wood. This may derive from an increased discussion of and information about the environmental impact of buildings. Wood may be perceived as new and innovative while not considered as adequately proven as steel and concrete with regards to engineering aspects.  相似文献   
13.
Environment, Development and Sustainability - This paper examines the impact of energy efficiency (EE) and renewable energy (RE) on carbon emissions, using a panel data of South Asian countries...  相似文献   
14.
Lagoons have been traditionally used in India for decentralized treatment of domestic sewage. These are cost effective as they depend mainly on natural processes without any external energy inputs. This study focuses on the treatment efficiency of algae-based sewage treatment plant (STP) of 67.65 million liters per day (MLD) capacity considering the characteristics of domestic wastewater (sewage) and functioning of the treatment plant, while attempting to understand the role of algae in the treatment. STP performance was assessed by diurnal as well as periodic investigations of key water quality parameters and algal biota. STP with a residence time of 14.3 days perform moderately, which is evident from the removal of total chemical oxygen demand (COD) (60 %), filterable COD (50 %), total biochemical oxygen demand (BOD) (82 %), and filterable BOD (70 %) as sewage travels from the inlet to the outlet. Furthermore, nitrogen content showed sharp variations with total Kjeldahl nitrogen (TKN) removal of 36 %; ammonium N (NH4-N) removal efficiency of 18 %, nitrate (NO3-N) removal efficiency of 22 %, and nitrite (NO2-N) removal efficiency of 57.8 %. The predominant algae are euglenoides (in facultative lagoons) and chlorophycean members (maturation ponds). The drastic decrease of particulates and suspended matter highlights heterotrophy of euglenoides in removing particulates.  相似文献   
15.

We examine the dynamics and spatial determinants of land change in India by integrating decadal land cover maps (1985–1995–2005) from a wall-to-wall analysis of Landsat images with spatiotemporal socioeconomic database for ~630,000 villages in India. We reinforce our results through collective evidence from synthesis of 102 case studies that incorporate field knowledge of the causes of land change in India. We focus on cropland–fallow land conversions, and forest area changes (excludes non-forest tree categories including commercial plantations). We show that cropland to fallow conversions are prominently associated with lack of irrigation and capital, male agricultural labor shortage, and fragmentation of land holdings. We find gross forest loss is substantial and increased from ~23,810 km2 (1985–1995) to ~25,770 km2 (1995–2005). The gross forest gain also increased from ~6000 km2 (1985–1995) to ~7440 km2 (1995–2005). Overall, India experienced a net decline in forest by ~18,000 km2 (gross loss–gross gain) consistently during both decades. We show that the major source of forest loss was cropland expansion in areas of low cropland productivity (due to soil degradation and lack of irrigation), followed by industrial development and mining/quarrying activities, and excessive economic dependence of villages on forest resources.

  相似文献   
16.
17.
The Role of Wood Material for Greenhouse Gas Mitigation   总被引:2,自引:0,他引:2  
Based on an interdisciplinary perspective the role of wood as a carbon sink, as a multi-purpose material, and as a renewable energy source for the net reduction of greenhouse gases is discussed. We synthesize aspects from engineering, natural and social sciences to better understand the role of wood substitution in CO2 mitigation. We also formulate some recommendations on filling knowledge gaps that could be useful for policy making regarding how wood substitution could be further expanded. There are sufficient wood resources to substantially increase the use of wood for material and energy purposes. However, a number of factors hinder a wider use of wood for energy and material purposes. Furthermore, an analysis of wood substitution is a very complex issue, since the substitution influencing factors are to be found along the entire wood supply chain and involve several industries, socio-economic and cultural aspects, traditions, price dynamics, and structural and technical change. To improve the knowledge about wood as a substitute for other resources and the implications, it would be helpful to better integrate research from different disciplines on the subject and to cover different scales from a project to an economy-wide level.  相似文献   
18.
This study presents surface ozone (O3) and carbon monoxide (CO) measurements conducted at Bhubaneswar from December 2010 to November 2012 and attempts for the very first time a health risk assessment of the atmospheric trace gases. Seasonal variation in average 24 h O3 and CO shows a distinct winter (December to February) maxima of 38.98?±?9.32 and 604.51?±?145.91 ppbv, respectively. O3 and CO characteristics and their distribution were studied in the form of seasonal/diurnal variations, air flow patterns, inversion conditions, and meteorological parameters. The observed winter high is likely due to higher regional emissions, the presence of a shallower boundary layer, and long-range transport of pollutants from the Indo-Gangetic Plain (IGP). Large differences between daytime and nighttime O3 values during winter compared to other seasons suggest that photochemistry is much more active on this site during winter. O3 and CO observations are classified in continental and marine air masses, and continental influence is estimated to increase O3 and CO by up to 20 and 120 ppbv, respectively. Correlation studies between O3 and CO in various seasons indicated the role of CO as one of the O3 precursors. Health risk estimates predict 48 cases of total premature mortality in adults due to ambient tropospheric O3 during the study period. Comparatively low CO concentrations at the site do not lead to any health effects even during winter. This study highlights the possible health risks associated with O3 and CO pollution in Bhubaneswar, but these results are derived from point measurements and should be complemented either with regional scale observations or chemical transport models for use in design of mitigation policies.  相似文献   
19.
Experiments were conducted for the study of nutrient budget in ten farmer's ponds (0.2–0.5 ha) in Orissa, India with a mean water depth of 1.0–1.2 m. Scampi (Macrobrachium rosenbergii) were stocked in these ponds at stocking density of 3.75–5.0/m2. The average initial body weight of scampi was 0.02 mg. The culture period was for 4 months. Feed was the main input. Total feed applied to these ponds ranged from 945 to 2261 kg pond/cycle (crop). The feed conversion ratio varied 1.65 to 1.78. In addition to feed, rice straw, urea, and single super phosphate were applied to these ponds in small amounts for plankton production. At harvest time, the average weight of scampi varied from 60–90 g. The budget showed that feed was the major input of nitrogen (N), phosphorus (P), and carbon in these ponds. The inorganic fertilizer (urea and single super phosphate), organic fertilizer (rice straw and yeast extract), and inlet water, either from the initial fills or from rainwater, were the source of all other N, P, and organic carbon (OC) to these ponds. Total N applied to these ponds through all these inputs ranged from 44.45 to 103.98 kg N per crop, 12.23 to 28.79 kg P per crop, and from 381.54 to 905.22 kg OC per crop, respectively. Among all the inputs, feed alone accounted for 95.34 % N, 97.98 % P, and 94.27 % OC, respectively. Recovery of 16.34 to 38.66 kg N (average 29.27 kg), 1.28 to 3.02 kg P (average 2.29 kg), and 63.21 to 149.51 kg OC (average 113.20 kg), respectively, by the scampi harvest were observed in these ponds. Thus, harvest of scampi accounted for recovery of 35.18 to 39.01 (average 36.85 %) of added N, 10.09 to 10.97 (average 10.44 %) of added P, and 7.57 to 17.12 (average 16.34 %) of added OC, respectively.  相似文献   
20.
The present work deals with the determination of uranium concentrations in drinking and ground water samples by laser fluorimetry and calculation of cumulative, age-dependent radiation doses to humans. The concentrations were found to be between 0.20 ± 0.03 and 64.0 ± 3.6 μg L?1, with an average of 11.1 ± 1.5 μg L?1, well within the drinking water limit of regulatory bodies. The concentrations of uranium increase with depth of water samples collection. The estimated annual ingestion dose due to the intake of uranium through drinking water for all age groups varied between 0.2 and 137 μSv a?1, with an average of 17.3 μSv a?1. The mean annual ingestion dose is 5% of the global average ingestion dose, for infants, marginally higher than for other age group. Most effective dose values were less than 20 μSv a?1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号