首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2991篇
  免费   90篇
  国内免费   119篇
安全科学   208篇
废物处理   182篇
环保管理   571篇
综合类   437篇
基础理论   662篇
环境理论   3篇
污染及防治   777篇
评价与监测   202篇
社会与环境   115篇
灾害及防治   43篇
  2023年   18篇
  2022年   40篇
  2021年   42篇
  2020年   43篇
  2019年   33篇
  2018年   71篇
  2017年   67篇
  2016年   89篇
  2015年   84篇
  2014年   97篇
  2013年   284篇
  2012年   145篇
  2011年   187篇
  2010年   127篇
  2009年   153篇
  2008年   151篇
  2007年   193篇
  2006年   154篇
  2005年   114篇
  2004年   98篇
  2003年   136篇
  2002年   84篇
  2001年   72篇
  2000年   65篇
  1999年   45篇
  1998年   42篇
  1997年   40篇
  1996年   37篇
  1995年   30篇
  1994年   38篇
  1993年   34篇
  1992年   23篇
  1991年   26篇
  1990年   15篇
  1989年   13篇
  1988年   17篇
  1987年   24篇
  1986年   15篇
  1985年   19篇
  1984年   14篇
  1983年   19篇
  1982年   19篇
  1981年   24篇
  1980年   13篇
  1979年   14篇
  1978年   7篇
  1977年   9篇
  1971年   6篇
  1957年   5篇
  1955年   5篇
排序方式: 共有3200条查询结果,搜索用时 15 毫秒
101.
The impact of recalcitrant organic compounds on soil hydrophobicity was evaluated in contaminated soil from a manufactured gas plant site following 12 months of phytoremediation. Significant reduction in soil wetting and water retention was observed in contaminated soil compared to an uncontaminated control. Phytoremediation was effective at reducing total PAHs by 69% with corresponding changes in soil classification from extremely hydrophobic (initial sample) to moderately-strongly hydrophobic (planted) and hydrophilic-very hydrophilic (unplanted) after 12 months. The greatest reduction in soil hydrophobicity was observed in the unplanted, unfertilized treatments that had the lowest removal rate of PAHs. The presence of plants may contribute to hydrophobicity in contaminated soil.  相似文献   
102.
Conservation Genetics at the Species Boundary   总被引:13,自引:0,他引:13  
Abstract: Conservation genetics has expanded its purview such that molecular techniques are now used routinely to prioritize populations for listing and protection and infer their historical relationships in addition to addressing more traditional questions of heterozygosity and inbreeding depression. Failure to specify whether molecular data are being used for diagnosis-related questions or for population viability questions, however, can lead either to misinterpretation of character data as adaptive information or to misinterpretation of frequency or distance data as diagnostic or historical information. Each of these misinterpretations will confound conservation programs. The character-based approach to delimiting phylogenetic species is both operationally and logically superior to "diagnostic" methods that involve distance- or frequency-based routines, which are unstable over time. Tree-based criteria for the diagnosis of conservation "units" are also inappropriate because they can depend on patterns inferred without reference to diagnostic characters. Intraspecific studies, conservation-related or otherwise, that adopt terminology and methods designed to infer nested hierarchic relationships confuse diagnosis with historical inferences by treating diagnoses as outcomes rather than as precursors to phylogeny reconstruction. A character-based diagnostic approach recognizes the analytical dichotomy between species hierarchies and population statistics and provides a framework for the understanding of each. No species concept, however, should be viewed as an absolute criterion for protecting populations, but as part of a framework from within which identification of protection and management goals can be achieved effectively and defensibly.  相似文献   
103.
The Natural Imperative for Biological Conservation   总被引:3,自引:0,他引:3  
  相似文献   
104.
105.
This article measures the changes in energy use, blue water footprint, and greenhouse gas (GHG) emissions associated with shifting from current US food consumption patterns to three dietary scenarios, which are based, in part, on the 2010 USDA Dietary Guidelines (US Department of Agriculture and US Department of Health and Human Services in Dietary Guidelines for Americans, 2010, 7th edn, US Government Printing Office, Washington, 2010). Amidst the current overweight and obesity epidemic in the USA, the Dietary Guidelines provide food and beverage recommendations that are intended to help individuals achieve and maintain healthy weight. The three dietary scenarios we examine include (1) reducing Caloric intake levels to achieve “normal” weight without shifting food mix, (2) switching current food mix to USDA recommended food patterns, without reducing Caloric intake, and (3) reducing Caloric intake levels and shifting current food mix to USDA recommended food patterns, which support healthy weight. This study finds that shifting from the current US diet to dietary Scenario 1 decreases energy use, blue water footprint, and GHG emissions by around 9 %, while shifting to dietary Scenario 2 increases energy use by 43 %, blue water footprint by 16 %, and GHG emissions by 11 %. Shifting to dietary Scenario 3, which accounts for both reduced Caloric intake and a shift to the USDA recommended food mix, increases energy use by 38 %, blue water footprint by 10 %, and GHG emissions by 6 %. These perhaps counterintuitive results are primarily due to USDA recommendations for greater Caloric intake of fruits, vegetables, dairy, and fish/seafood, which have relatively high resource use and emissions per Calorie.  相似文献   
106.
107.
108.
Journal of Material Cycles and Waste Management - Material flow analysis (MFA) is a well-established tool for supporting decisions on nutrient management. This paper shows the importance of the...  相似文献   
109.
The southeastern United States has undergone anthropogenic changes in landscape structure, with the potential to increase (e.g., urbanization) and decrease (e.g., reservoir construction) stream flashiness and flooding. Assessment of the outcome of such change can provide insight into the efficacy of current strategies and policies to manage water resources. We (1) examined trends in precipitation, floods, and stream flashiness and (2) assessed the relative influence of land cover and flow‐regulating features (e.g., best management practices and artificial water bodies) on stream flashiness from 1991 to 2013. We found mean annual precipitation decreased, which coincided with decreasing trends in floods. In contrast, stream flashiness, overall, showed an increasing trend during the period of study. However, upon closer examination, 20 watersheds showed stable stream flashiness, whereas 5 increased and 6 decreased in flashiness. Urban watersheds were among those that increased or decreased in flashiness. Watersheds that increased in stream flashiness gained more urban cover, lost more forested cover and had fewer best management practices installed than urban watersheds that decreased in stream flashiness. We found best management practices are more effective than artificial water bodies in regulating flashy floods. Flashiness index is a valuable and straightforward metric to characterize changes in streamflow and help to assess the efficacy of management interventions.  相似文献   
110.
This paper examines the anthropogenic factors that have contributed to wetland loss and degradation in the Mekong Delta, Vietnam from 1816 AD to present. Our analysis is framed over five historical periods and highlights the role that seven drivers of wetland degradation have played in the Mekong Delta, including: resettlement and economic development policies; population growth and urbanization; demand for food and reclaiming wetland for agriculture; construction of canals construction of dykes flood protection systems; expansion of travel systems (waterway and roads); and exploitation of wetland natural resources. Of these, government policies for resettlement and economic development seem to have had the greatest impact on wetland loss and degradation in the Mekong Delta throughout the course of history. As a result of these factors, only 0.068 million hectares of the original 4.0 million hectares of the Mekong Delta currently remains as primary swamp forest ecosystem. History suggests that future management of the Mekong Delta should take a holistic approach that includes a better understanding of the implications of past decisions on wetland loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号