首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3348篇
  免费   68篇
  国内免费   33篇
安全科学   124篇
废物处理   104篇
环保管理   612篇
综合类   526篇
基础理论   876篇
环境理论   9篇
污染及防治   810篇
评价与监测   193篇
社会与环境   148篇
灾害及防治   47篇
  2023年   13篇
  2022年   18篇
  2021年   41篇
  2020年   20篇
  2019年   32篇
  2018年   79篇
  2017年   76篇
  2016年   84篇
  2015年   86篇
  2014年   95篇
  2013年   248篇
  2012年   156篇
  2011年   203篇
  2010年   152篇
  2009年   163篇
  2008年   176篇
  2007年   207篇
  2006年   208篇
  2005年   152篇
  2004年   108篇
  2003年   102篇
  2002年   117篇
  2001年   66篇
  2000年   59篇
  1999年   49篇
  1998年   50篇
  1997年   61篇
  1996年   46篇
  1995年   54篇
  1994年   49篇
  1993年   31篇
  1992年   31篇
  1991年   23篇
  1990年   24篇
  1989年   11篇
  1988年   14篇
  1987年   14篇
  1986年   20篇
  1985年   17篇
  1984年   19篇
  1983年   22篇
  1982年   17篇
  1981年   18篇
  1980年   18篇
  1979年   20篇
  1978年   13篇
  1977年   11篇
  1967年   9篇
  1965年   12篇
  1957年   10篇
排序方式: 共有3449条查询结果,搜索用时 453 毫秒
121.
122.
Hydroponic root mats for wastewater treatment—a review   总被引:2,自引:0,他引:2  
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.  相似文献   
123.
The 2015 UN climate negotiations in Paris resulted in an inclusive, binding treaty that succeeds the Kyoto Protocol. In contrast to the failure at Copenhagen in 2009, the Paris negotiations are therefore seen as a major diplomatic success that has regenerated faith in the United Nations Framework Convention on Climate Change as a forum for dynamic multilateralism. The Paris Agreement provides a robust framework for ratcheting up efforts to combat global warming. However, the Agreement’s value will remain unclear for some time. The historical path to the Paris accord is outlined, and a preliminary assessment is offered of its key elements and outcomes.  相似文献   
124.
It has been hypothesized that climate warming will allow southern species to advance north and invade northern ecosystems. We review the changes in the Swedish mammal and bird community in boreal forest and alpine tundra since the nineteenth century, as well as suggested drivers of change. Observed changes include (1) range expansion and increased abundance in southern birds, ungulates, and carnivores; (2) range contraction and decline in northern birds and carnivores; and (3) abundance decline or periodically disrupted dynamics in cyclic populations of small and medium-sized mammals and birds. The first warm spell, 1930–1960, stands out as a period of substantial faunal change. However, in addition to climate warming, suggested drivers of change include land use and other anthropogenic factors. We hypothesize all these drivers interacted, primarily favoring southern generalists. Future research should aim to distinguish between effects of climate and land-use change in boreal and tundra ecosystems.  相似文献   
125.
Upflow reactors for riparian zone denitrification   总被引:1,自引:0,他引:1  
We used permeable reactive subsurface barriers consisting of a C source (wood particles), with very high hydraulic conductivities ( approximately 0.1-1 cm s(-1)), to provide high rates of riparian zone NO3-N removal at two field sites in an agricultural area of southwestern Ontario. At one site, a 0.73-m3 reactor containing fine wood particles was monitored for a 20-mo period and achieved a 33% reduction in mean influent NO3-N concentration of 11.5 mg L(-1) and a mean removal rate of 4.5 mg L(-1) d(-1) (0.7 g m(-2) d(-1)). At the second site, four smaller reactors (0.21 m3 each), two containing fine wood particles and two containing coarse wood particles, were monitored for a 4-mo period and were successful in attenuating mean influent NO3-N concentrations of 23.7 to 35.1 mg L(-1) by 41 to 63%. Mean reaction rates for the two coarse-particle reactors (3.2 and 7.8 mg L(-1) d(-1), or 1.5 and 3.4 g m(-2) d(-1)) were not significantly different (p > 0.2) than the rates observed in the two fine-particle reactors (5.0 and 9.9 mg L(-1) d(-1), or 1.8-3.5 g m(-2) d(-1)). A two-dimensional ground water flow model is used to illustrate how permeable reactive barriers such as these can be used to redirect ground water flow within riparian zones, potentially augmenting NO3- removal in this environment.  相似文献   
126.
Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%).  相似文献   
127.
Effect of humic substances on the precipitation of calcium phosphate   总被引:2,自引:0,他引:2  
For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0, the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.  相似文献   
128.
129.
The ongoing biodiversity crisis becomes evident in the widely observed decline in abundance and diversity of species, profound changes in community structure, and shifts in species’ phenology. Insects are among the most affected groups, with documented decreases in abundance up to 76% in the last 25–30 years in some terrestrial ecosystems. Identifying the underlying drivers is a major obstacle as most ecosystems are affected by multiple stressors simultaneously and in situ measurements of environmental variables are often missing. In our study, we investigated a headwater stream belonging to the most common stream type in Germany located in a nature reserve with no major anthropogenic impacts except climate change. We used the most comprehensive quantitative long-term data set on aquatic insects available, which includes weekly measurements of species-level insect abundance, daily water temperature and stream discharge as well as measurements of additional physicochemical variables for a 42-year period (1969–2010). Overall, water temperature increased by 1.88 °C and discharge patterns changed significantly. These changes were accompanied by an 81.6% decline in insect abundance, but an increase in richness (+8.5%), Shannon diversity (+22.7%), evenness (+22.4%), and interannual turnover (+34%). Moreover, the community's trophic structure and phenology changed: the duration of emergence increased by 15.2 days, whereas the peak of emergence moved 13.4 days earlier. Additionally, we observed short-term fluctuations (<5 years) in almost all metrics as well as complex and nonlinear responses of the community toward climate change that would have been missed by simply using snapshot data or shorter time series. Our results indicate that climate change has already altered biotic communities severely even in protected areas, where no other interacting stressors (pollution, habitat fragmentation, etc.) are present. This is a striking example of the scientific value of comprehensive long-term data in capturing the complex responses of communities toward climate change.  相似文献   
130.
Conservation and management of marine biodiversity depends on biomonitoring of marine habitats, but current approaches are resource-intensive and require different approaches for different organisms. Environmental DNA (eDNA) extracted from water samples is an efficient and versatile approach to detecting aquatic animals. In the ocean, eDNA composition reflects local fauna at fine spatial scales, but little is known about the effectiveness of eDNA-based monitoring of marine communities at larger scales. We investigated the potential of eDNA to characterize and distinguish marine communities at large spatial scales by comparing vertebrate species composition among marine habitats in Qatar, the Arabian Gulf (also known as the Persian Gulf), based on eDNA metabarcoding of seawater samples. We conducted species accumulation analyses to estimate how much of the vertebrate diversity we detected. We obtained eDNA sequences from a diverse assemblage of marine vertebrates, spanning 191 taxa in 73 families. These included rare and endangered species and covered 36% of the bony fish genera previously recorded in the Gulf. Sites of similar habitat type were also similar in eDNA composition. The species accumulation analyses showed that the number of sample replicates was insufficient for some sampling sites but suggested that a few hundred eDNA samples could potentially capture >90% of the marine vertebrate diversity in the study area. Our results confirm that seawater samples contain habitat-characteristic molecular signatures and that eDNA monitoring can efficiently cover vertebrate diversity at scales relevant to national and regional conservation and management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号