The contamination and distribution of organochlorinated compounds were considered in three crustacean species (edible crab, Cancer pagurus; spider crab, Maja brachydactyla; velvet swimming crab, Necora puber) from five sites along the coasts of Brittany and Normandy (Western and North-Western France). PCBs (16 single congeners), pp'-DDE and HCB were measured in hepatopancreas, gonads and muscle: in all, 175 samples were analysed. The spider crab was the only species found in the five sampling sites, thus enabling comparison between areas. Specimens from Antifer were much more contaminated (summation operator 16 PCBs in hepatopancreas=2000-4000 ng g(-1) dry weight) than those from other sites (50-1000 ng g(-1) d.w.). Among all the three species, the spider crab appeared more contaminated by PCBs than the edible crab, by a factor 2-3, probably in relation with specific differences in their life cycle. There was no difference due to the gender of the species. Within the different analysed tissues, contamination levels increased from muscle to gonads and hepatopancreas in relation with the fat content. A very similar PCB composition was observed in all samples, PCB fingerprints being characterised by the relative importance of the more persistent PCB congeners: CB153, 138, 180, 187, and 118. Finally, these results were compared to recent food regulations first of maximum marker PCB intake and secondly of maximum dioxin-like PCB intake. By considering the muscle, all samples were far below the regulatory limits; for hepatopancreas and gonads, however, some samples were unfit for human consumption. 相似文献
Sustainability indicators are well recognized for their potential to assess and monitor sustainable development of agricultural systems. A large number of indicators are proposed in various sustainability assessment frameworks, which raises concerns regarding the validity of approaches, usefulness and trust in such frameworks. Selecting indicators requires transparent and well-defined procedures to ensure the relevance and validity of sustainability assessments. The objective of this study, therefore, was to determine whether experts agree on which criteria are most important in the selection of indicators and indicator sets for robust sustainability assessments. Two groups of experts (Temperate Agriculture Research Network and New Zealand Sustainability Dashboard) were asked to rank the relative importance of eleven criteria for selecting individual indicators and of nine criteria for balancing a collective set of indicators. Both ranking surveys reveal a startling lack of consensus amongst experts about how best to measure agricultural sustainability and call for a radical rethink about how complementary approaches to sustainability assessments are used alongside each other to ensure a plurality of views and maximum collaboration and trust amongst stakeholders. To improve the transparency, relevance and robustness of sustainable assessments, the context of the sustainability assessment, including prioritizations of selection criteria for indicator selection, must be accounted for. A collaborative design process will enhance the acceptance of diverse values and prioritizations embedded in sustainability assessments. The process by which indicators and sustainability frameworks are established may be a much more important determinant of their success than the final shape of the assessment tools. Such an emphasis on process would make assessments more transparent, transformative and enduring. 相似文献
Fishponds are man-made shallow water bodies that are still little studied because of their small size. They represent high value ecosystems, both environmentally (biodiversity hotspot) and economically (fish production). They can have a high place on the hydrographic network, so their influence on water quality is of first importance for rivers and water bodies located downstream and monitored under the Water Framework Directive. These small water bodies can be a source of contaminants during draining period or an efficient buffer for pesticides. We wanted to evaluate whether these ponds could also be a remediation tool against metals by following the annual evolution of upstream/downstream flows. Cadmium, copper, lead and zinc concentrations were quantified in the dissolved phase upstream and downstream of three ponds, each one having a specific agricultural environment (traditional or organic). Metal concentration was quantified in sediments and water. For the dissolved phase, the predictive non-effect concentration was often exceeded, suggesting an environmental risk. Results highlighted also greater quantity of metals at the downstream of the pond compared to the upstream, suggesting remobilization into the ponds or direct cross-sectional contributions from the watershed (e.g. runoff from crops) or even remobilization. Regarding sediments, minimal contamination was shown but a high mineralogical variability. No buffer effect of ponds, which could reduce the risk of acute or chronic toxicity, was detected.
Environmental Science and Pollution Research - The total cultivated area in Brazil reached to 62 million ha in 2018, with the predominance of genetically modified soybean and corn (36 and 17... 相似文献
Environmental Science and Pollution Research - The scientific knowledge produced by academic research can be valued in all sectors of human activity, including private sector. The ROVALTAIN... 相似文献
Environmental Science and Pollution Research - Legacy (i.e., polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD)) and alternative halogenated flame retardants (HFRs) were... 相似文献
Environmental Science and Pollution Research - The Red River is the largest river in northern Vietnam, and it serves as the main water source for production and human activities in the Red River... 相似文献
The sensitivity of different physiological parameters in Scenedesmus obliquus and Lemna minor exposed to herbicide (flumioxazin) was investigated to indicate the most convenient and sensitive parameter. To assess toxicity of flumioxazin, we used a panel of biomarkers: pigment contents, chlorophyll fluorescence parameters and antioxidative enzyme activities. Algae and duckweed were exposed to 48-h IC50 for growth rate. In L. minor, the sensitivity of the parameters was as follows: QN > Oxygen emmision > phiS(PSII) > QP > phi(PSII) > CAT, GR > Pigment> APO > Growth. For S. obliquus, this ranking was as follows: CAT > Oxygen emission > QP > APO > GR > Pigment > phiS(PSII) > Growth > phi(PSII) > QN (from the greatest to the least sensitive). The results demonstrated that the observed toxicity is related not only to interspecific variations but also to the selected parameter. 相似文献
Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities. 相似文献
The effectiveness of environmental protection measures is based on the early identification and diagnosis of anthropogenic pressures. Similarly, restoration actions require precise monitoring of changes in the ecological quality of ecosystems, in order to highlight their effectiveness. Monitoring the ecological quality relies on bioindicators, which are organisms revealing the pressures exerted on the environment through the composition of their communities. Their implementation, based on the morphological identification of species, is expensive because it requires time and experts in taxonomy. Recent genomic tools should provide access to reliable and high-throughput environmental monitoring by directly inferring the composition of bioindicators’ communities from their DNA (metabarcoding). The French-Swiss program SYNAQUA (INTERREG France-Switzerland 2017–2019) proposes to use and validate the tools of environmental genomic for biomonitoring and aims ultimately at their implementation in the regulatory bio-surveillance. SYNAQUA will test the metabarcoding approach focusing on two bioindicators, diatoms, and aquatic oligochaetes, which are used in freshwater biomonitoring in France and Switzerland. To go towards the renewal of current biomonitoring practices, SYNAQUA will (1) bring together different actors: scientists, environmental managers, consulting firms, and biotechnological companies, (2) apply this approach on a large scale to demonstrate its relevance, (3) propose robust and reliable tools, and (4) raise public awareness and train the various actors likely to use these new tools. Biomonitoring approaches based on such environmental genomic tools should address the European need for reliable, higher-throughput monitoring to improve the protection of aquatic environments under multiple pressures, guide their restoration, and follow their evolution. 相似文献