首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   1篇
  国内免费   2篇
安全科学   2篇
废物处理   11篇
环保管理   10篇
综合类   23篇
基础理论   17篇
污染及防治   39篇
评价与监测   11篇
社会与环境   5篇
  2023年   1篇
  2022年   6篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   5篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   12篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   8篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
  1964年   2篇
  1963年   3篇
  1961年   1篇
  1959年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
11.
Natural organic matter (NOM) is found in all surface, ground and soil waters. During recent decades, reports worldwide show a continuing increase in the color and NOM of the surface water, which has an adverse affect on drinking water purification. For several practical and hygienic reasons, the presence of NOM is undesirable in drinking water. Various technologies have been proposed for NOM removal with varying degrees of success. The properties and amount of NOM, however, can significantly affect the process efficiency. In order to improve and optimise these processes, the characterisation and quantification of NOM at different purification and treatment processes stages is important. It is also important to be able to understand and predict the reactivity of NOM or its fractions in different steps of the treatment. Methods used in the characterisation of NOM include resin adsorption, size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and fluorescence spectroscopy. The amount of NOM in water has been predicted with parameters including UV-Vis, total organic carbon (TOC), and specific UV-absorbance (SUVA). Recently, methods by which NOM structures can be more precisely determined have been developed; pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), multidimensional NMR techniques, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The present review focuses on the methods used for characterisation and quantification of NOM in relation to drinking water treatment.  相似文献   
12.
Urban area expansion is happening at much faster rates in Asian and African cities than elsewhere in the world. This study uses multi-temporal Landsat images to map the urban extent of six small to large cities in West Africa at four different time steps from the early 1970s–2010. The selected cities are Kumasi of Ghana, Daloa of Cote d’Ivoire, Abuja and Kano in Nigeria, Kindia of Guinea, and Ouagadougou of Burkina Faso. All cities revealed significant urban growth in both urban area and population; however, it was apparent that there was a lot of variability in urban area development. Exponential urban growth rates in the cities were measured as ranging between 0.026 and 0.077, with allometric scaling factors matching those of other countries.  相似文献   
13.

Introduction  

In the nuclear industry 1,4-dioxane is used as a solvent in liquid scintillation technique for measuring low-energy beta-emitters such as 3H or C14 in aqueous media. Improper disposal of 1,4-dioxane can contaminate the ground and surface waters. Conventional wastewater treatment processes like chemical treatment, air stripping, carbon adsorption, and biological treatment are ineffective for the degradation of 1,4-dioxane.  相似文献   
14.
Health care waste includes all the waste generated by health care establishments, research facilities, and laboratories. This constitutes a variety of chemical substances, such as pharmaceuticals, radionuclides, solvents, and disinfectants. Recently, scientists and environmentalists have discovered that wastewater produced by hospitals possesses toxic properties due to various toxic chemicals and pharmaceuticals capable of causing environmental impacts and even lethal effects to organisms in aquatic ecosystems. Many of these compounds resist normal wastewater treatment and end up in surface waters. Besides aquatic organisms, humans can be exposed through drinking water produced from contaminated surface water. Indeed, some of the substances found in wastewaters are genotoxic and are suspected to be potential contributors to certain cancers. The aim of this study was to evaluate the genotoxic and cytotoxic potential of wastewaters from two hospitals and three clinical diagnostic centers located in Jaipur (Rajasthan State), India using the prokaryotic Salmonella mutagenicity assay (Ames assay) and the eukaryotic Saccharomyces cerevisiae respiration inhibition assay. In the Ames assay, untreated wastewaters from both of the health care sectors resulted in significantly increased numbers of revertant colonies up to 1,000–4,050 as measured by the Salmonella typhimurium TA98 and TA100 strains (with and without metabolic activation) after exposure to undiluted samples, which indicated the highly genotoxic nature of these wastewaters. Furthermore, both hospital and diagnostic samples were found to be highly cytotoxic. Effective concentrations at which 20 % (EC20) and 50 % (EC50) inhibition of the respiration rate of the cells occurred ranged between ~0.00 and 0.52 % and between 0.005 and 41.30 % (calculated with the help of the MS excel software XLSTAT 2012.1.01; Addinsoft), respectively, as determined by the S. cerevisiae assay. The results indicated that hospital wastewaters contain genotoxic and cytotoxic components. In addition, diagnostic centers also represent small but significant sources of genotoxic and cytotoxic wastes.  相似文献   
15.
The kinetics, reaction pathways and product distribution of oxidation of tetrachloroethylene (PCE) by potassium permanganate (KMnO4) were studied in phosphate-buffered solutions under constant pH, isothermal, completely mixed and zero headspace conditions. Experimental results indicate that the reaction is first-order with respect to both PCE and KMnO4 and has an activation energy of 9.3+/-0.9 kcal/mol. The second-order rate constant at 20 degrees C is 0.035+/-0.004 M(-1) s(-1), and is independent of pH and ionic strength (I) over a range of pH 3-10 and I approximately 0-0.2 M, respectively. The PCE-KMnO4 reaction may proceed through further oxidation and/or hydrolysis reaction pathways, greatly influenced by the acidity of the solution, to yield CO2(g), oxalic acid, formic acid and glycolic acid. Under acidic conditions (e.g., pH 3), the further oxidation pathway will dominate and PCE tends to be directly mineralized into CO2 and chloride. Under neutral (e.g., pH 7) and alkaline conditions (e.g., pH 10), the hydroxylation pathway dominates the reaction and PCE is primarily transformed into oxalic acid prior to complete PCE mineralization. Moreover, all chlorine atoms in PCE are rapidly liberated during the reaction and the rate of chloride production is very close to the rate of PCE degradation.  相似文献   
16.
ABSTRACT

The absence of a vaccine and effective treatment for COVID-19 has created public panic and burdened the health systems in most countries. Along with health workers’, sanitation personnel are also working at the frontlines in the war against the disease by keeping cities clean. Sanitation workers are engaged in Drudgery, Dangerous, Dirty and Dehumanising work that makes them vulnerable for developing the chronic respiratory diseases due to the exposure of various hazardous materials and toxic gases that are emitted from the solid waste. The sanitation workers working on a contractual basis are excluded from the labour policies and welfare programs who are playing a vital role in fighting the pandemic. Women sanitation workers are even more vulnerable because most of them are non-literate, poor in financial management and under-represented in the sanitation employee’s union. The local and state governments should protect and safeguard sanitation workers by providing them with adequate protective equipment, ensure payment of paying adequate salaries and provide them with health insurance.  相似文献   
17.
A landfill reclamation project was considered to recover landfill airspace and soil, reduce future groundwater impacts by removing the waste buried in the unlined area, and optimize airspace use at the site. A phased approach was utilized to evaluate the technical and economic feasibility of the reclamation project; based on the results of these evaluations, approximately 6.8 ha of the unlined cells were reclaimed. Approximately 371,000 in-place cubic meters of waste was mined from 6.8 ha in this project. Approximately 230,600 cubic meters of net airspace was recovered due to beneficial use of the recovered final cover soil and reclaimed soil as intermediate and daily cover soil, respectively, for the current landfill operations. This paper presents the researchers’ landfill reclamation project experience, including a summary of activities pertaining to reclamation operations, an estimation of reclamation rates achieved during the project, project costs and benefits, and estimated composition of the reclaimed materials.  相似文献   
18.
The ability of resistance-based sensors to measure in situ waste moisture content in a landfill was examined. One hundred and thirty-five resistance-based sensors were installed in a leachate recirculation well field at a bioreactor landfill in Florida, US. The performance of these sensors was studied for a period of over 6 years. The sensors were found to respond to an increase in moisture resulting from leachate recirculation. It was observed that 78% of sensors worked successfully in the field during the study period. The initial spatial average moisture content determined by the sensor readings (using a laboratory-derived calibration) was 42.8% compared to 23% from gravimetric readings. Eighteen sensors (13%) showed that they were saturated before liquid addition, and no change in moisture content was observed in these sensors during the study period. Laboratory-derived calibration methods resulted in an over-estimation of moisture content. An alternate field-calibration method, where wetted sensor output was assumed equal to the average of gravimetric measurements for wet samples, was evaluated. The final spatial average moisture contents were 64.2% and 44.4% for the laboratory-derived and field-derived calibration methodologies, respectively, compared to 45% measured gravimetrically from excavated waste samples. When moisture content was determined using a mass balance approach, the result was 34.6%. The results suggest that when appropriately calibrated, resistivity-based sensors can be used to obtain a reasonably accurate estimate of local moisture content. However, caution should be taken to extend the moisture content values that are representative of waste surrounding the sensors to estimate the overall moisture content on the landfill-wide scale.  相似文献   
19.
针对传统教与学算法在解决复杂多峰函数优化问题时,具有局部最优且搜索开发能力较差的缺点,提出了一种改进的多学习教与学优化算法,新算法为学员的每一维加入不同的教学因子,设计了基于学员均值比较的教师选择策略和向教师及学员学习的多学习策略。基于多个单峰和多峰函数的仿真结果表明,新算法跟传统的、改进的教与学算法相比,在稳定性、寻优精度和收敛速度方面更具优势。  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号