首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
废物处理   1篇
环保管理   2篇
基础理论   8篇
污染及防治   25篇
评价与监测   2篇
社会与环境   1篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1972年   4篇
  1970年   1篇
  1969年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
11.
Environmental Science and Pollution Research - High levels of CO2 emissions are extensively cited as one of the main global concerns nowadays. Therefore, researchers have been investigating the...  相似文献   
12.
Environmental Science and Pollution Research - To understand the nexus between economic growth and energy sources, in this study, we have selected Pakistan and collected data over the period...  相似文献   
13.
The phytoavailabilities and potential remobilization of potentially toxic elements (PTEs) such as Zn, Pb, Cd, As, and Sb were assessed in contaminated technosols from former mining and smelting sites. The PTE concentrations in soil pore water (SPW) and diffusive gradients in thin films (DGT)-measured concentration (C DGT) methods were used to assess the bioavailabilities of PTE and their remobilization in this study. Together with classical Chelex-100 DGT probes to measure Zn, Cd, and Pb, novel ferrihydrite-backed DGT were used for As and Sb measurements alongside with Rhizon soil moisture sampler method for SPW sampling. To assess the phytoavailabilities of PTE, a germination test with dwarf beans as a plant indicator was used for this purpose. Dwarf bean primary leaves showed high Zn concentrations in contrast to Pb and Cd which showed low phytoavailabilities. Despite As and Sb are present in high concentrations in the mine tailings, their phytoavailabilities indicate very low bioavailabilities. The amounts of Zn, Pb, Cd, As, and Sb extracted with DGT devices correlated well with the total dissolved PTE concentrations in the SPW. The highest R values were observed for Zn, followed by Cd and Pb, indicating the ability of the soil to sustain SPW concentrations, which decreased in that order. Good correlations were also observed between each of dissolved PTE concentrations in SPW, DGT-measured PTE concentrations (C DGT), and the accumulation of PTE in dwarf bean primary leaves. It could be concluded that the use of Rhizon soil moisture samplers and DGT methods may be considered to be a good methods to predict the PTE bioavailabilities in contaminated technosols.  相似文献   
14.
Cyanobacterial bloom events in South Taihu Lake cause serious water quality problems and disturb aesthetic view of lake’s environment. In this study, correlations between cyanobacterial blooms and hydro-meteorological factors, including water quality, temperature and precipitation were investigated. Results demonstrated that South Taihu Lake was heavily affected by cyanobacteria and the proliferation of cyanobacteria due to variations in hydro-meteorological factors and water quality conditions. Water quality parameters, including COD, NH3-N, TN and TP improved significantly since 2008 even at an elevated cyanobacterial bloom situation. Correlation analyses have shown that the development of cyanobacterial density and chlorophyll a concentration was sensitive to a wider temperature variation. The optimum temperature for cyanobacteria was 20°C, while extremely low and high temperatures were found to suppress their growth. Moreover, unusual rainfall patterns were measured during the study period (2003–2009), which showed an adverse impact on cyanobacterial development. Findings from this study suggested that seasonal lake’s water quality monitoring; suitable treatment of cyanobacterial blooms and strict policy implementation can solve the water quality issues in highly eutrophic lakes like Taihu.  相似文献   
15.
Water pollution with pathogenic microorganisms is one of the serious threats to human health, particularly in developing countries. The main objective of this article is to highlight microbial contamination of drinking water, the major factors responsible for microbial contamination, and the resulting health problems in Pakistan. Furthermore, this study will be helpful for researchers and administrative agencies to initiate relevant studies and develop new policies to protect further deterioration of water supply with pathogenic microbes and ensure clean and safe drinking water to the public in Pakistan. In Pakistan, water at the source, in the distribution network, and at the consumer tap is heavily polluted with coliforms and fecal coliforms all over the country. An overview of more than 7,000 water samples reviewed here reveals that an average of over 71 and 58 % samples in the country was contaminated with total coliforms and fecal coliforms, respectively. Drinking water contamination accounts for 20 to 40 % of all diseases in the country, which causes national income losses of Rs 25–58 billion annually (US$0.25–0.58 billion, approximately 0.6–1.44 % of the country’s GDP). Improper disposal of industrial and municipal wastes is the most important factor responsible for water pollution in the country followed by cross-contamination due to old and leaking pipes and lack of water filtration and disinfection facilities. There is an urgent need for emergency steps to stop further deterioration of water quality and improve the existing water quality so as to protect the public from widespread waterborne diseases.  相似文献   
16.
Extensive studies have been conducted in the past decades to predict the environmental abiotic and biotic redox fate of nitroaromatic and nitramine explosives. However, surprisingly little information is available on one-electron standard reduction potentials (Eo(R-NO2/R-NO2)). The Eo(R-NO2/R-NO2) is an essential thermodynamic parameter for predicting the rate and extent of reductive transformation for energetic residues. In this study, experimental (linear free energy relationships) and theoretical (ab initio calculation) approaches were employed to determine Eo(R-NO2/R-NO2) for nitroaromatic, (caged) cyclic nitramine, and nitroimino explosives that are found in military installations or are emerging contaminants. The results indicate a close agreement between experimental and theoretical Eo(R-NO2/R-NO2) and suggest a key trend: Eo(R-NO2/R-NO2) value decreases from di- and tri-nitroaromatic (e.g., 2,4-dinitroanisole) to nitramine (e.g., RDX) to nitroimino compound (e.g., nitroguanidine). The observed trend in Eo(R-NO2/R-NO2) agrees with reported rate trends for reductive degradation, suggesting a thermodynamic control on the reduction rate under anoxic/suboxic conditions.  相似文献   
17.
Background Phytoremediation is a promising technology for the cleanup of polluted environments. The technology has so far been used mainly to remove toxic heavy metals from contaminated soil, but there is a growing interest in broadening its applications to remove/degrade organic pollutants in the environment. Both plants and soil microorganisms have certain limitations with respect to their individual abilities to remove/breakdown organic compounds. A synergistic action by both rhizosphere microorganisms that leads to increased availability of hydrophobic compounds, and plants that leads to their removal and/or degradation, may overcome many of the limitations, and thus provide a useful basis for enhancing remediation of contaminated environments.Main Features The review of literature presented in this article provides an insight to the nature of plant-microbial interactions in the rhizosphere, with a focus on those processes that are relevant to the breakdown and/or removal of organic pollutants. Due consideration has been given to identify opportunities for utilising the plant-microbial synergy in the rhizosphere to enhance remediation of contaminated environments.Results and Discussion The literature review has highlighted the existence of a synergistic interaction between plants and microbial communities in the rhizosphere. This interaction benefits both microorganisms through provision of nutrients by root exudates, and plants through enhanced nutrient uptake and reduced toxicity of soil contaminants. The ability of the plant-microbial interaction to tackle some of the most recalcitrant organic chemicals is of particular interest with regard to enhancing and extending the scope of remediation technologies.Conclusions Plant-microbial interactions in the rhizosphere offer very useful means for remediating environments contaminated with recalcitrant organic compounds.Outlook A better knowledge of plant-microbial interactions will provide a basis for improving the efficacy of biological remediations. Further research is, however, needed to investigate different feedback mechanisms that select and regulate microbial activity in the rhizosphere.  相似文献   
18.
Journal of Polymers and the Environment - The present work presents an analysis of the tensile properties of Palm as well as Luffa natural fiber composites (NFC) in high density polyethylene...  相似文献   
19.
Environmental Science and Pollution Research - Massive discharge of wastes produced by the processing of leather so far confers the most important environmental challenge facing the tanneries...  相似文献   
20.
The nutrient distribution of the Cochin Backwater was studied at 6 stations throughout the year. The depth profiles of phosphorus (inorganic and organic), nitrogen (nitrate and nitrite) and silicon, showed a marked seasonal rhythm, induced by the local precipitation and land runoff. Changes in other environmental features such as temperature, salinity, dissolved oxygen, pH and alkalinity were small during the premonsoon period when the system remains marine-dominated, and large during the monsoon period when the estuary becomes freshwater-dominated. Seasonal changes in the hydrographical conditions of the adjoining coastal waters of the Arabian Sea which influence the backwater system have been discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号