首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   782篇
  免费   9篇
  国内免费   26篇
安全科学   35篇
废物处理   80篇
环保管理   75篇
综合类   56篇
基础理论   130篇
环境理论   1篇
污染及防治   278篇
评价与监测   121篇
社会与环境   36篇
灾害及防治   5篇
  2023年   12篇
  2022年   99篇
  2021年   81篇
  2020年   22篇
  2019年   31篇
  2018年   43篇
  2017年   46篇
  2016年   51篇
  2015年   35篇
  2014年   42篇
  2013年   98篇
  2012年   39篇
  2011年   50篇
  2010年   22篇
  2009年   35篇
  2008年   18篇
  2007年   17篇
  2006年   12篇
  2005年   8篇
  2004年   9篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1977年   1篇
  1976年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
排序方式: 共有817条查询结果,搜索用时 343 毫秒
641.
The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing.

Implications: This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.  相似文献   

642.
The present study was conducted to systematically review, analyze, and interpret all the relevant evidence in the literature on the possible link between exposure to bisphenol A (BPA) and the risk of type-2 diabetes mellitus (T2DM). We developed a comprehensive search strategy and used it to search Web of Science, Scopus, PubMed, and Google Scholar up to March 31, 2016, producing 3108 hits, of which 13 original papers were included. Findings of these studies were quite controversial; few studies indicated a significant positive association between BPA exposure and T2DM, while some other failed to detect such a relationship. Overall, it can be suggested that chance is unlikely the plausible explanation for the observed association between BPA exposure and T2DM. This was mainly because even in the negative studies some clues could be found in favor of a statistically significant relationship between BPA and T2DM. Additionally, some of the studies had shortcomings in defining the exposure and outcome measures, which, if present, might have led to underestimating the relationship between BPA exposure and T2DM. The theoretical plausibility of such a relationship found earlier in animal studies also supports this point. However, more definitive answer requires the conduct of future longitudinal studies, in which the possible association between BPA exposure and T2DM is assessed over much longer periods of time with more temporally robust BPA measurements. In addition, it would be quite beneficial if future studies be conducted in areas where data is still lacking (e.g., South America, Australia/Oceania, and Europe).
Graphical abstract ?
  相似文献   
643.
The UN estimated about five million deaths every year due to water-borne diseases, accounting from four billion patients. Keeping in view, the ever increasing health issues and to undermine this statistics, a reliable and sustainable water-treatment method has been developed using visible light for water treatment. titania nanoparticles (NPs) have been synthesized successfully by a more applicable method Viz: liquid impregnation (LI) method. The bacterial death rate by photocatalysis under visible light was studied by employing a typical fluorescent source and was found to follow pseudo first-order reaction kinetics. The nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy, and energy-dispersive X-ray spectroscopy to deduce their size range, surface morphology, and elemental compositions, respectively. Among all the prepared grades, 1 % Ag–TiO2 was found to be a very effective photocatalytic agent against Escherichia coli. The resulted photoinactivated data were also evaluated by different empirical kinetic models for bacterial inactivation. Hom, Hom-power, Rational, and Selleck models were not able to explain the disinfection kinetics but modified-Hom model fitted best with the experimentally obtained data by producing a shoulder, log-linear, and a tail region.  相似文献   
644.
The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m3, respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: ‘diesel’ (56.3 % of total PAHs on average), ‘gasoline’ (15.5 %), ‘wood combustion, and incineration’ (13 %), ‘industry’ (9.2 %), and ‘road soil particle’ (6.0 %). The four n-alkane source factors identified were: ‘petrogenic’ (65 % of total n-alkanes on average), ‘mixture of petrogenic and biomass burning’ (15 %), ‘mixture of biogenic and fossil fuel’ (11.5 %), and ‘biogenic’ (8.5 %). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4 % of total PAHs and 5.0 % of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area of Tehran has been effective in reducing the PAHs concentration.  相似文献   
645.
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV–C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO2. A simple method was employed for TiO2 immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7?×?10?5 m3.s?1, while the flow rate of feed was 2.53?×?10?7, 7.56?×?10?7, and 1.26?×?10?6 m3.s?1, respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box–Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20–100 ppmv), pH (3–9), liquid flow rate (2.53?×?10?7?1.26?×?10?6 m3.s?1), and TiO2 loading (8.8–17.6 g.m?2) were analyzed with this method. The adjusted R 2 value (0.9936) was in close agreement with that of corresponding R 2 value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH?~?6.41, and flow rate of 2.53?×?10?7 m3.s?1 and catalyst loading of 17.6 g.m?2). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO2 nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO2 was 47.2 and 45.8 m2 g?1 before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH?~?6). Figure
The schematic view of the experimental set-up  相似文献   
646.
There is an increased interest in composting as an effective means of handling large amounts of organic wastes generated by oil palm industries in Malaysia. However, very few studies have been conducted to develop an effective composting process using the multi-enzymatic system. This study demonstrates an effective composting process of EFB (empty fruit bunch) with POME (palm oil mill effluent), using the optimized process parameters and compatible multi-enzymatic fungal system. A higher decrease (3 %) of organic matter was achieved in the fungal treated system, almost double that of the control (without inoculum). The lowest C/N ratio and soluble protein content recorded were about 17 and 128.82 g/kg, respectively. The maximum germination index obtained was 116 % at day 50 of treatment, which is considered high compared to the control (uninoculated). Furthermore, the maximum activity of ligninase enzyme was found to be 25.95 U/g and the highest cellulase activity was recorded at 0.975 U/g.  相似文献   
647.
In this paper chiral bioactive poly(amide–imide)s (PAI)s were synthesized from four different diacids containing chiral amino acids with 4,4′-methylene bis(3-chloro 2,6-diethylaniline) as a diamine via direct polycondensation reaction in a system of tetra-n-butylammonium bromide and triphenyl phosphite as a condensing agent. The structures of these polymers were confirmed by FT-IR, 1H-NMR, specific rotation, elemental and thermogravimetric analysis (TGA) techniques. TGA showed that the 10 % weight loss temperature in a nitrogen atmosphere was more than 378 °C, which indicates that the resulting PAIs have a good thermal stability. The biodegradability of the monomers and prepared polymers was investigated in culture media and soil burial test for assessment of the susceptibility of these compounds to microbial degradation. The results showed that the synthesized monomers and theirs derived polymers are biologically active and nontoxic to microbial growth.  相似文献   
648.
Contamination of heavy metals in fish and vegetables is regarded as a major crisis globally, with a large share in many developing countries. In Bogra District of Bangladesh, concentrations of six heavy metals, i.e., chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd) and lead (Pb), were evaluated in the most consumed vegetables and fish species. The sampling was conducted during February–March 2012 and August–September 2013. The levels of metals varied between different fish and vegetable species. Elevated concentrations of As, Cd and Pb were observed in vegetable species (Solanum tuberosum, Allium cepa and Daucus carota), and fish species (Anabas testudineus and Heteropneustes fossilis) were higher than the FAO/WHO permissible limits, indicating these three metals might pose risk from the consumption of these vegetable and fish species. The higher concentration of heavy metals in these vegetable species might be due to the higher uptake from soil and sediment ingestion behavior in fish species. Multivariate principal component analysis (PCA) showed significant anthropogenic contributions of Cr, Ni, Cu and Pb in samples as the PCA axis scores were correlated with scores of anthropogenic activities. Target hazard quotients showed that the intakes of Cu, As and Pb through vegetables and fish were higher than the recommended health standards, indicated non-carcinogenic risk. Therefore, intakes of these elements via fish and vegetables for Bangladeshi people are a matter of concern.  相似文献   
649.
Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p?=?0.930, p?=?0.001) and BOD5 and COD (r p?=?0.839, p?=?0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin.  相似文献   
650.
This study examined the relationship between the abundance of bacterial denitrifiers in groundwater at four sites, differing with respect to overlaying land management and peizometer depth. Groundwater was sourced from 36 multilevel piezometers, which were installed to target different groundwater zones: (1) subsoil, (2) subsoil to bedrock interface, and (3) bedrock. The gene copy concentrations (GCCs), as gene copies per liter, for bacterial 16S rRNA genes and the denitrifying functional genes, nirK, nirS, and nosZ, were determined using quantitative polymerase chain reaction assays. The results were related to gaseous nitrogen emissions and to the physicochemical properties of the four sites. Overall, nirK and nirS abundance appeared to show no significant correlation to N2O production (P?=?0.9989; P?=?0.3188); and no significant correlation was observed between nosZ and excess N2 concentrations (P?=?0.0793). In the majority of piezometers investigated, the variation of nirK and nirS gene copy concentrations was considered significant (P?<?0.0001). Dissolved organic carbon (DOC) decreased with aquifer depth and ranged from 1.0–4.0 mg l?1, 0.9–2.4 mg l?1, and 0.8–2.4 mg l?1 within piezometers located in the subsoil, subsoil/bedrock interface, and bedrock depths, respectively. The availability of increasing DOC and the depth of the water table were positively correlated with increasing nir and nosZ GCCs (P?=?0.0012). A significant temporal correlation was noted between nirS and piezometer depth (P?<?0.001). Interestingly, the nirK, nirS, and nosZ GCCs varied between piezometer depths within specific sites, while GCCs remained relatively constant from site to site, thus indicating no direct impact of agricultural land management strategies investigated on denitrifier abundance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号