首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
  国内免费   33篇
环保管理   2篇
综合类   40篇
基础理论   21篇
污染及防治   7篇
评价与监测   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   6篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   7篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1990年   1篇
排序方式: 共有72条查询结果,搜索用时 0 毫秒
71.
Produced water from polymer flooding is di cult to treat due to its high polymer concentration, high viscosity, and emulsified characteristics. The dithiocarbamate flocculant, DTC (T403), was prepared by the amine-terminated polyoxypropane-ether compound known as Je amine-T403. The product was characterized by IR spectra and elemental analysis. The DTC agent chelating with Fe2+ produced a network polymer matrix, which captured and removed oil droplets e ciently. Oil removal by the flocculent on simulated produced water with 0, 200, 500, 900 mg/L of partially hydrolyzed polyacrylamide (HPAM) was investigated for aspects of e ectiveness of DTC (T403) dosage and concentrations of HPAM and Fe2+ ions in the wastewater. Results showed that HPAM had a negative influence on oil removal e ciency when DTC (T403) dosage was lower than 20 mg/L. However, residual oil concentrations in tested samples with di erent concentrations of HPAM all decreased below 10 mg/L when DTC (T403) dosage reached 30 mg/L. The concentration of Fe2+ in the initial wastewater had a slight e ect on oil removal at the range of 2–12 mg/L. Results showed that Fe3+ could not be used in place of Fe2+ as Fe3+ could not react with DTC under flocculated conditions. The e ects of mineral salts ions were also investigated.  相似文献   
72.
Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5 hr at unadjusted pH 3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5 mmol/L Ca2 +, active layer facing draw solution (AL-DS) and 1.5 mol/L NaCl (DS); 2. No Ca2 +, active layer-facing FS (AL-FS) and 4 mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH 3.56, and larger than the two values at pH 9.00. This manifested that, at pH 3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH 9.00, the mutual effects of OA and BSA eased the membrane fouling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号