首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   734篇
  免费   39篇
  国内免费   290篇
安全科学   37篇
废物处理   60篇
环保管理   47篇
综合类   393篇
基础理论   134篇
污染及防治   308篇
评价与监测   37篇
社会与环境   28篇
灾害及防治   19篇
  2023年   13篇
  2022年   45篇
  2021年   35篇
  2020年   23篇
  2019年   18篇
  2018年   33篇
  2017年   22篇
  2016年   54篇
  2015年   52篇
  2014年   47篇
  2013年   72篇
  2012年   56篇
  2011年   59篇
  2010年   54篇
  2009年   50篇
  2008年   54篇
  2007年   35篇
  2006年   43篇
  2005年   27篇
  2004年   25篇
  2003年   30篇
  2002年   28篇
  2001年   30篇
  2000年   18篇
  1999年   16篇
  1998年   27篇
  1997年   24篇
  1996年   15篇
  1995年   14篇
  1994年   7篇
  1993年   12篇
  1992年   11篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1983年   1篇
排序方式: 共有1063条查询结果,搜索用时 0 毫秒
981.
应用稳态酸化模型计算酸沉降临界负荷   总被引:5,自引:2,他引:5  
应用稳定状态土壤化学模型PROFILE计算了柳州薄层砂页岩红壤和地表水的酸沉降临界负荷。对模型所需参数,建立了系统完整的收集、测量与计算方法,得到柳州地区针叶林植被区域由湿沉降计算总沉降的经验公式。  相似文献   
982.
采用缺氧—好氧—催化臭氧氧化工艺处理某石化厂的含盐废水。实验结果表明:在进水COD为200~350 mg/L的条件下,经生化处理后的出水COD稳定在50~60 mg/L,COD去除率稳定在75%左右;在臭氧投加量为4.5 g/L、V(催化剂Ⅱ)∶V(废水)=1.5∶1的条件下,进行连续催化臭氧氧化后出水COD稳定在20 mg/L以下,COD去除率大于70%,满足DB 61/224—2011《黄河流域(陕西段)污水综合排放标准》。表征结果显示,催化剂表面含有铜元素,比表面积为250.815 m2/g,吸水率为60.9%,经过滤可去除废水中残留的催化剂。  相似文献   
983.
ABSTRACT: This study assesses economic and environmental impacts of uses of woody draws, small natural drainage areas covered by trees and shrubs in agricultural landscapes. Three agricultural uses and four alternative uses are evaluated. A net present value approach is used to compare economic impacts of uses of draws and APEX is used to evaluate the interaction between a woody draw and the contributing upland area and simulate the environmental impacts of uses of draws in the field. The study shows that relative to agricultural uses, alternative uses of draws have significant environmental benefits in terms of reducing surface runoff and sediment and associated pollutants, such as nitrogen, phosphorus and pesticides. Agricultural uses of draws are not always the most profitable option. Certain alternatives, such as curly willow and the mixed buffer, are highly profitable. Agricultural landscapes could be differentially managed to achieve both economic variability and environmental benefits. Government support is necessary to promote alternative uses of woody draws. The support can be in the form of CRP payments or market development of buffer products. Farmers and resource managers can use study results to manage woody draws and evaluate the merits of alternative policies for managing woody draws.  相似文献   
984.
A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA) with half‐lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1‐TCA, and the derivative cis‐dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C‐TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2‐dichloropropane (1,2‐DCP) and 1,1‐dichlorethane (1,1‐DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half‐lives for 1,2‐DCP and 1,1‐DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate‐modified Fenton's reagent was effective in degrading aqueous‐phase PCE, TCE, 1,1,1‐TCA, 1,2‐DCP, etc.; however, this approach had minimal effects on solid‐phase contaminants. The observed oxidant demand was 16 g‐H2O2/L‐groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero‐valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1‐TCA only to 1,1‐DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2‐DCP, 1,1‐DCA, and CA. The longevity test showed that one gram of 325‐mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10?2 Lm?2h?1, 2 × 10?3 Lm?2h?1, and 1.2 × 10?3 Lm?2h?1 for 1,1,1‐TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc.  相似文献   
985.
986.
Plants grown in contaminated areas may accumulate trace metals to a toxic level via their roots and/or leaves. In the present study, we investigated the distribution and sources of Pb and Cd in maize plants (Zea mays L.) grown in a typical zinc smelting impacted area of southwestern China. Results showed that the smelting activities caused significantly elevated concentrations of Pb and Cd in the surrounding soils and maize plants. Pb isotope data revealed that the foliar uptake of atmospheric Pb was the dominant pathway for Pb to the leaf and grain tissues of maize, while Pb in the stalk and root tissues was mainly derived from root uptake. The ratio of Pb to Cd concentrations in the plants indicated that Cd had a different behavior from Pb, with most Cd in the maize plants coming from the soil via root uptake.  相似文献   
987.
Zeng XW  Qiu RL  Ying RR  Tang YT  Tang L  Fang XH 《Chemosphere》2011,82(3):321-328
The Zn/Cd hyperaccumulator Arabis paniculata is able to tolerate high level of Zn and Cd. To clarify the molecular basis of Zn and Cd tolerance, proteomic approaches were applied to identify proteins involved in Zn and Cd stress response in A. paniculata. Plants were exposed to both low and high Zn or Cd levels for 10 d. Proteins of leaves in each treatment were separated by 2-DE (two-dimensional electrophoresis). Nineteen differentially-expressed proteins upon Zn treatments and 18 proteins upon Cd treatments were observed. Seventeen out of 19 of Zn-responsive proteins and 16 out of 18 of Cd-responsive proteins were identified using MALDI-TOF/TOF-MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry). The most of identified proteins were known to function in energy metabolism, xenobiotic/antioxidant defense, cellular metabolism, protein metabolism, suggesting the responses of A. paniculata to Zn and Cd share similar pathway to certain extend. However, the different metal defense was also revealed between Zn and Cd treatment in A. paniculata. These results indicated that A. paniculata against to Zn stress mainly by enhancement of energy metabolism including auxin biosynthesis and protein metabolism to maintain plant growth and correct misfolded proteins. In the case of Cd, plants adopted antioxidative/xenobiotic defense and cellular metabolism to keep cellular redox homeostasis and metal-transportation under Cd stress.  相似文献   
988.
Tang T  Fan H  Ai S  Han R  Qiu Y 《Chemosphere》2011,83(3):255-264
Catalytic removal of bisphenol A from aqueous solution with hemoglobin immobilized on amino-modified magnetic nanoparticles as an enzyme catalyst was reported. The amino-modified magnetite nanoparticles were firstly prepared by the coprecipitation of Fe2+ and Fe3+ with NH3·H2O and then modified by 3-aminopropyltriethoxysilane. The immobilization process was optimized by examining enzyme concentration, glutaraldehyde concentration, cross-link time, and immobilization time. The optimum conditions for the removal of bisphenol A with immobilized hemoglobin were also investigated. Under the optimality conditions, the removal efficiency of bisphenol A was about 80.3%. The immobilization had a beneficial effect on the stability of hemoglobin and conversions of bisphenol A. According to the proposed breakdown pathway and the intermediates, the enzyme-catalytic removal of bisphenol A by the immobilized hemoglobin is considered to be an effective method.  相似文献   
989.
Qiu, Zeyuan, 2010. Prioritizing Agricultural Lands for Conservation Buffer Placement Using Multiple Criteria. Journal of the American Water Resources Association (JAWRA) 1-13. DOI: 10.1111/j.1752-1688.2010.00466.x Abstract: Although conservation buffers are multifunctional, the current conservation buffer planning strategies tend to use a single criterion, most frequently a hydrological or soil condition indicator, to guide conservation buffer placement. This study presents a watershed planning approach that prioritizes agricultural lands for conservation buffers based on multiple selection criteria and applies the approach to Raritan Basin in central New Jersey. The multiple selection criteria include soil erodibility, hydrological sensitivity, wildlife habitat, and impervious surface rate. These criteria capture the conservation buffers’ benefits in reducing soil erosion, controlling runoff generation, enhancing wildlife habitat, and mitigating stormwater impacts, respectively. An expert panel was used to identify and define the section criteria, review the measured values of those criteria, and develop the classification scales that assign the class score to each criterion. The prioritization is based on the summation of the criteria class scores. About one-third of agricultural lands are prioritized for conservation buffers in Raritan Basin. The total program cost of converting those prioritized agricultural lands to conservation buffers in Raritan Basin is estimated to be between $54.8 and 102.9 million depending on the composition of installed conservation buffer practices.  相似文献   
990.
改性PES膜在MBR中膜阻力分析及膜污染机理研究   总被引:2,自引:0,他引:2  
以聚醚砜(PES)、醋酸纤维素(CA)和纳米二氧化钛(TiO2)为膜材料,采用L-S相转化法制备共混改性PES膜。在24℃、0.2 MPa的操作条件下,制得的PES膜纯水通量为300 L/(m2.h)左右,CA改性PES膜为660 L/(m2.h)左右,TiO2改性PES膜为840 L/(m2.h)左右。通过膜生物反应器中膜阻力的测定,表明膜污染主要由浓差极化层及凝胶层引起的;通过活性污泥对膜污染机理的研究,判断出污泥的过滤过程基本符合沉积过滤定律。在MBR中运行时,改性PES膜稳定通量高于未改性膜,总阻力低于未改性膜;TiO2改性膜稳定通量高于CA改性膜,总阻力低于CA改性膜;通过扫描电镜分析,改性PES膜沉积层的厚度均比未改性膜薄,TiO2改性膜沉积层厚度小于CA改性膜,表明改性膜的抗污染性能提高了,TiO改性膜抗污染性能更优。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号