首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   955篇
  免费   28篇
  国内免费   40篇
安全科学   24篇
废物处理   55篇
环保管理   88篇
综合类   128篇
基础理论   230篇
污染及防治   371篇
评价与监测   73篇
社会与环境   50篇
灾害及防治   4篇
  2024年   4篇
  2023年   3篇
  2022年   33篇
  2021年   3篇
  2020年   6篇
  2019年   14篇
  2018年   62篇
  2017年   12篇
  2016年   34篇
  2015年   40篇
  2014年   27篇
  2013年   58篇
  2012年   27篇
  2011年   59篇
  2010年   49篇
  2009年   53篇
  2008年   48篇
  2007年   78篇
  2006年   53篇
  2005年   29篇
  2004年   66篇
  2003年   46篇
  2002年   28篇
  2001年   92篇
  2000年   32篇
  1999年   13篇
  1998年   6篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1964年   1篇
  1960年   1篇
  1951年   1篇
排序方式: 共有1023条查询结果,搜索用时 0 毫秒
771.
772.
Benthic marine invertebrates with long-lived larvae are believed to have dispersal capabilities that contribute to maintaining genetic uniformity among populations over large geographical scales. However, both hydrological and biological factors may limit the actual dispersal of such larvae. We studied the population genetic structure of the edible common sea urchin Paracentrotus lividus (Lamarck, 1816), to explore its dispersal patterns in the Atlanto-Mediterranean region and, more specifically, to ascertain the role of the Strait of Gibraltar in shaping the genetic structure of this species. For this purpose, we analysed 158 individuals for the mitochondrial 16S rRNA gene and 151 of these for the nuclear single-copy intron adenine nucleotide transporter (ANT) from 16 localities from the Atlantic and Mediterranean basins, spanning over 4,000 km. Mitochondrial 16S rRNA shows higher genetic diversity in the Mediterranean than in the Atlantic and reveals a sharp break between the populations of both basins, probably as a consequence of the barrier imposed by the Almería–Orán hydrological front, situated east of the Strait of Gibraltar. Both markers suggest that a recent population expansion has taken place in both basins, most probably following the Messinian salinity crisis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
773.
    
The effects and mechanism of chemical oxygen demand (COD), nitrogen, and phosphorus concentration removal by an integrated vertical-flow constructed wetland were studied in the wetland system during one inlet–outlet operating period, in two typical stages (each stage is connective 24 h, sampled once every 4 h). The concentration of ammonia decreased along the flow direction in the system, while levels of nitrate (NO3?-N) increased. In one operating period, total nitrogen (TN) concentration fell with rising operation time due to evacuative reoxygenation. The TN and NH3-N removal rates in the system were 26.6% and 97.5%, respectively. COD decreased rapidly in the early stages and more gradually in the direction of water flow of the wetland system. Average total phosphorus (TP) removal rate was 20.71%. TN and NO3?-N levels in water of the wetland had a tendency to decline gradually with increasing operation time. Ammonia concentrations displayed only a small variation with operation time. The results also indicated that the wetland was able to maintain its temperature. The oxygen content differed during the various operating stages and exerted a marked influence on COD, TP, and TN removal.  相似文献   
774.
In order to provide a theoretical reference for the early management of target trees in the low mountain region of eastern Sichuan, and a theoretical basis for the sustainable management of masson pine (Pinus massoniana) plantations, we chose three different kinds of densities (100 target trees per hectare, 150 target trees per hectare, and 200 target trees per hectare) in a 33-year-old masson pine plantation in the low mountain region of eastern Sichuan. We investigated the change patterns of soil physicochemical properties and plant diversity during the early stage of the management of the target trees. The results showed that compared to the control (CK), the early stage of management of P. massoniana plantation target trees dramatically improved the soil physical properties, the pH value, contents of organic matter, and total phosphorus (P < 0.05); however, the available phosphorus and the available nitrogen varied slightly (P > 0.05). Compared to the control (CK), significant (P < 0.05) differences in the richness index were observed between shrubs and herbs (P < 0.05), and in the shrub layer, the dominant position was replaced by others. Simpson, Shannon, and Pielou indexes of shrubs showed no significant difference in the study (P > 0.05). On the contrary, Simpson, Shannon, and Pielou i ndexes of herbs were significantly lower than those for CK (P < 0.05). There were significant correlations between plant species diversity and soil physicochemical properties such as soil pH, contents of total phosphorus, and the available nitrogen. The early stage of management of P. massoniana plantation target trees significantly improved the plant diversity and soil physicochemical properties. Among all the three different treatments, the density of 150 target trees per hectare had the best effect on the soil physicochemical properties and plant diversity. © 2018 Science Press. All rights reserved.  相似文献   
775.
    
The methanol (M) extract of the fruit-rinds of Picralima nitida (PN) was analyzed phytochemically and evaluated for its toxicity effect in Wistar rats. The rats were administered graded doses (0.75, 1.5, 3, and 6 g kg?1 p.o) of the extract daily for 6 weeks and the toxicological effect of these varying levels of extract were examined on the serum, hepatic, and renal concentration of biochemical parameters as well as the histopathology of tissue section of these liver, kidney, and lungs. Clinical signs and hematology were also evaluated. Phytochemical analysis revealed that alkaloids and polyphenols were major compounds. Both biochemical and histopathological data presented demonstrate dose-dependent signs of toxicity. Our results show a significant elevation in serum concentration of aspartate amino-transferase, alanine amino-transferase, glucose, creatinine, total cholesterol, and protein with high-dose of PN treatment tested. PN also caused a significant reduction in hepatic malondialdehyde and a slight increase in glutathione concentration at the lowest dose tested. Renal urea level was reduced significantly in test groups. A significant change was observed in the relative weights of the spleen, heart, and kidneys. The total white blood cell count was reduced, whereas the hematocrit level was increased remarkably in animals that received high doses of the extract. The acute toxicity LD50 was estimated at 14.5 and 12.5 g kg?1 body weight for male and female, respectively. These results show that prolonged usage of this extract at 1.5–6 g kg?1 dose could cause liver, kidney, and lung injury, while the effect was mild at small dose levels (0.75 g kg?1). Thus, the extract should be taken with caution bearing in mind that higher doses could affect the liver, kidneys, and lungs.  相似文献   
776.
In order to investigate the effect of tea tree rhizosphere soil acidification on yield and quality of tea tree, the pH value, yield, and quality index of fresh tea leaves of different ages were analyzed, and the correlation between rhizosphere soil acidification and ages, yield, and quality index were studied from nine tea plantations in Anxi county, Fujian Province. The results showed that 37.67% of the nine soils were acidified, and 10.03% of them were suitable for planting tea tree. Furthermore, the results indicated that the age of tea tree was significantly and negatively correlated with the soil pH value, as shown by a decrease in soil pH values associated with an increase in tree age. In addition, the yield of spring and fall crops of tea from these nine plantations were all significantly and positively correlated with the pH value, with correlation coefficients distribution values of 0.912-0.952 and 0.898-0.973, respectively. In addition, quality indices, including polyphenols, theanine, and caffeine for the nine tea plantations were all significantly and positively correlated with their soil pH values, and their correlation coefficient distribution values were 0.897-0.959, 0.908-0.974, and 0.907-0.975, respectively. Above all, as tea tree ages increased, rhizosphere soil acidity was significantly increased, and yield and quality of tea presented a statistically significantly up/down trend. © 2018 Science Press. All rights reserved.  相似文献   
777.
It is of great significance for in-situ bioremediation to clarify the migration behavior and biodegradation laws of chlorinated hydrocarbon solvents (CHS) in the vadose zone. We systematically summarized the phase distribution of CHS, the interaction between different phases, and the migration characteristics and clarified the evolution rules of CHS under different phases in the polluted vadose zone. CHS exists in the vadose zone as the NAPL, dissolved phase, adsorbed phase, gas phase, and other phases, where there are three decay evolution stages: early, middle, and late stages. Phase change and diffusion matrix size are important indicators at different stages; at the same time, gas, solid, liquid and NAPL phase CHS have a variety of interactive relationships in the vadose zone. Subsequently, the characteristics of the three main biological metabolic pathways of CHS in the vadose zone–aerobic co-metabolism, direct oxidation and anaerobic reduction, and dechlorination–and their influencing factors were summarized. Generally speaking, the anaerobic dechlorination capacity decreases with a decrease in the number of chlorine atoms, whereas the aerobic degradation capacity increases with a decrease in the number of chlorine atoms. The current status of in-situ remediation of CHS in the vadose zone was summarized using biostimulation and bioaugmentation methods, indicating that adding nutrient substances and injecting anaerobic dechlorination strains of Dehalococcoides are effective means of remediation. Simultaneously, the factors influencing the biodegradation of CHS in the vadose zone were elaborated to acquire a systematic insight into the significance of redox characteristics (oxygen) on the degradation of CHS. Finally, research on the biodegradation of CHS in the vadose zone is prospected, and it is necessary to carry out research on the interactive relationship between different phases of CHS, the data monitoring of CHS, the structure of the functional bacterial community, and research and development of active strains to provide theoretical guidance for the in-situ remediation of CHS in the vadose zone. © 2022 Science Press. All rights reserved.  相似文献   
778.
To provide scientific support for the rational development and utilization of thermal resources and avoid climate risks, the distribution of thermal resources in Qinghai-Tibet Plateau in the context of climate change was analyzed in this study. Based on meteorological data from 1961 to 2020 at 149 stations in Qinghai-Tibet Plateau, the changes in thermal resources over the past 50 years were analyzed using inclination rate analysis and Mann-Kendall inspection, combined with JAVA and Python programming. The results showed that: (1) the annual average temperature in Qinghai-Tibet Plateau shows an obvious warming trend, and the temperature increases greatly after the 1990s, with the climate tendency rate from 1961 to 2020 reaching 0.298 ℃/10 a. (2) The accumulated temperature and lasting days steadily above 0 ℃, 5 ℃ and 10 ℃ increased significantly, and the accumulated temperature increases were not entirely determined by the duration of the lasting days. (3) The beginning dates of accumulated temperature steadily above 0 ℃, 5 ℃, and 10 ℃ were generally advanced, while the deadlines were delayed, and the trend of early start dates was stronger than that of deadlines. In conclusion, this study shows that, in the context of global warming, thermal resources in Qinghai-Tibet Plateau have undergone substantial changes, which will play an important role in the introduction and extension of crops. © 2022 Science Press. All rights reserved.  相似文献   
779.
Plant biomass partitioning is an important driver of whole-plant net carbon gain, as biomass allocation could directly affect plant's future growth and reproduction. Alpine meadow in the northwestern Sichuan was impressed by the abundant community structure and species diversity. This study on biomass allocation pattern of different functional types and lifeforms might help understand plant life-history strategy of alpine meadow plants. We investigated 72 dominant herbaceous species for their compartments, biomass, and morphological traits during 2012-2014. These plants were sampled from natural grassland, disturbed grassland, and wintergreen grassland; they belonged to three functional types (grass, sedge, and forb) and two lifeforms (annual and perennial). The scaling relationships between functional traits of these plants were analyzed using Model type II regression method to estimate the parameters of the allometric equations. (1) Biomass allocation proportion of components significantly differed among grasses, sedges, and forbs owing to phylogeny: grasses had the highest stem biomass percentage, sedges had higher root biomass percentage, and forbs had higher leaf biomass percentage, but the scaling relationships were not significantly different, and isometric scaling was noted between biomass components for the three functional types. (2) Moreover, plant lifeforms affected the biomass allocation proportion of components, owing to the shorter or longer turnover rate and investment strategy between annual and perennial species. Annuals allocated more biomass to the stem and reproduction organs, but perennials invested more biomass to the leaves and roots. (3) In addition, plants from different grassland types differed in both biomass and morphology traits. Moreover, forbs from natural grassland and wintergreen grassland had higher leaf and reproductive biomass, but those from disturbed grasslands had higher stem biomass. Our results suggest that the functional type and lifeform decide the inherent scaling relationships between components of plants, but anthropogenic disturbance significantly impacted the quantity of component biomass. This study has important theoretical and practical significance to understand the response of alpine plants to climate change and anthropogenic disturbance as well as to help in the scientific management of alpine meadow. © 2018 Science Press. All rights reserved.  相似文献   
780.
The solution culture, paddy soil culture and the simulation experiments in the laboratory were conducted to clarify the interactions between selenium and phosphorus, and its effects on the growth and selenium accumulation in rice. Results revealed that a suitable supply of selenium could promote rice growth and excessive selenium could injure rice plant, causing lower biomass, especially in the roots. The supply of selenite could enhance the selenium contents of rice shoots and roots in solution culture and in soil culture. The selenium concentrations in roots were much higher than those in shoots supplied with the same rates of selenium and phosphorus. The interaction between selenium and phosphorus was evident. When the phosphorus supply increased to meet the needs of plant growth, phosphorus could promote absorption and accumulation of selenium in the shoots. If the phosphorus supply was excessive, phosphorus could inhibit the accumulation of selenium in the shoots at the lower selenite level (2 micromol l(-1)), but could not at the higher selenite level (10 micromol l(-1)). With the supply of phosphate increased, the selenium concentrations in the roots decreased significantly at both selenite levels. The presence of phosphate could decrease Se sorption on the soil surface and increase the selenium concentration in the soil solution. The concentrations of selenium in shoots and roots supplied with 0.08 g kg(-1) phosphorus were lower than those with no phosphorus supplied. With the increase of phosphorus added to 0.4 g kg(-1), the selenium concentration in shoots and roots increased. The effect of phosphorus on the concentration was statistically significant at all three selenium levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号