首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9729篇
  免费   2篇
  国内免费   3篇
安全科学   3篇
废物处理   776篇
环保管理   1216篇
综合类   938篇
基础理论   3116篇
污染及防治   1765篇
评价与监测   1018篇
社会与环境   899篇
灾害及防治   3篇
  2023年   2篇
  2022年   12篇
  2021年   14篇
  2020年   4篇
  2019年   5篇
  2018年   1479篇
  2017年   1376篇
  2016年   1197篇
  2015年   128篇
  2014年   13篇
  2013年   14篇
  2012年   466篇
  2011年   1341篇
  2010年   691篇
  2009年   598篇
  2008年   886篇
  2007年   1226篇
  2006年   3篇
  2005年   19篇
  2004年   36篇
  2003年   62篇
  2002年   98篇
  2001年   17篇
  2000年   11篇
  1999年   2篇
  1998年   9篇
  1989年   1篇
  1986年   1篇
  1984年   12篇
  1983年   8篇
  1976年   1篇
  1935年   2篇
排序方式: 共有9734条查询结果,搜索用时 15 毫秒
861.
The aims of the present investigation were to reveal the distribution and enrichment characteristics of copper in soil and Phragmites australis of Liao River estuary wetland. The concentrations of copper in root, stem, leaf, and ear of Phragmites australis as well as in soil were determined to study the absorption capacity of copper by wild Phragmites australis of Liao River estuary wetland. The study was carried out at test pool of the Shenyang Agricultural University, and the experimental materials (soil, irrigating water and Phragmites australis) were derived from Liao River estuary wetland. The concentrations of copper in soil and Phragmites australis were 16.4441 to 49.0209 mg/kg and 0.8621 to 89.5524 mg/kg, respectively. The results indicated that the enrichment coefficients of copper in different tissues of Phragmites australis changed with the growth of Phragmites australis. The results revealed that the enrichment coefficients of copper in the whole Phragmites australis were greater than 1 at each growing stage of the Phragmites australis. The results also showed that the transfer coefficients of Phragmites australis to copper changed with the growth of Phragmites australis. The results revealed that the Phragmites australis had a good removal effect on copper from soil and had some characteristics of copper hyperaccumulator.  相似文献   
862.
Current wastewater treatment technologies do not remove many unregulated hydrophilic compounds, and there is growing interest that low levels of these compounds, referred to as emerging contaminants, may impact human health and the environment. A probabilistic-designed monitoring network was employed to infer the extent of Florida’s ambient freshwaters containing the wastewater (Includes reuse water, septic systems leachate, and wastewater treatment effluent.) indicators sucralose, acetaminophen, carbamazepine, and primidone and those containing the widely used pesticide imidacloprid. Extent estimates with 95% confidence bounds are provided for canals, rivers, streams, small and large lakes, and unconfined aquifers containing ultra-trace concentrations of these compounds as based on analyses of 2015 sample surveys utilizing 528 sites. Sucralose is estimated to occur in greater than 50% of the canal, river, stream, and large lake resource extents. The pharmaceuticals acetaminophen, carbamazepine, and primidone are most prevalent in rivers, with approximately 30% of river kilometers estimated to contain at least one of these compounds. Imidacloprid is estimated to occur in 50% or greater of the canal and river resource extents, and it is the only compound found to exceed published toxicity or environmental effects standards. Geospatial analyses show sucralose detection frequencies within Florida’s drainage basins to be significantly related to the percentage of urban land use (R2?=?0.36, p?<?0.001), and imidacloprid detection frequencies to be significantly related to the percentage of urban and agricultural land use (R2?=?0.47, p?<?0.001). The extent of the presence of these compounds highlights the need for additional emerging contaminant studies especially those examining effects on aquatic biota.  相似文献   
863.
Selection of appropriate residue application method is essential for better use of biomass for soil and environmental health improvement. A laboratory incubation experiment was conducted for 75 days to investigate C and N mineralization of residues of soybean (Glycine max L.), chickpea (Cicer arietinum L.), maize (Zea mays L.), and wheat (Triticum aestivum L.) placed on the soil surface and incorporated into the soil. The residue of soybean and chickpea had a greater decomposition rate than that of maize and wheat, despite of their placements. Higher rate of decomposition of the residue of soybean and chickpea was recorded when it was kept on the soil surface while soil incorporation of residue of wheat and maize resulted in faster decomposition. Therefore, these findings could be used as guidelines for management of crop residue application in farmland to improve soil and environmental quality.  相似文献   
864.
The presented results include decade of monitoring of the Vistula Lagoon waters and have been supplemented by the determination of chlorinated compounds, as well as on concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the sedimentation zone. Monitoring of river waters entering the Polish part of the lagoon and the lagoon waters confirmed the presence of plant protection chemical; the largest contributors has lindane (34%) and DDTtotal (21%); the same as for sediments were dominate lindane (19%) and DDTtotal (14%) within pp-DDT isomer dominate (13%). In the lagoon water, PCDD/Fs were determined within a range of 1.5–5.6 ng dm?3, leading to average toxicity of 0.18?±?0.13 ng TEQ·dm?3. In sediments, their concentrations fell within a range of 22.7–405.7 ng kg?1 dw and the average toxicity of the lagoon sediments was set at 5.00?±?1.98 ng TEQ·kg?1 dw. Both in water and sediments, the greatest share among PCDD/Fs has octa-chlorodibenzodioxin. Due to the hydromorphological conditions of the lagoon, the waters are mixed to the bottom causing the surface layer of sediment to become remobilized—this is suggested as the key factor when it comes to water recontamination and increased access of POPs to marine organisms.  相似文献   
865.
In order to optimize the processes of sampling, monitoring, and management, the initial aim of this paper was to develop a model for the definition and prediction of temporal changes of water quality. In the case of the Morava River Basin (Serbia), the patterns of temporal changes have been recognized by applying different multivariate statistical techniques. The results of the conducted cluster analysis are the indicators of the existence of the three monitoring periods: the low-water, transitional, and high-water periods, which is in accordance with changes in the water flow in the analyzed river basin. A possibility of reducing the initial data set and recognizing the main pollution sources was examined by carrying out the principal component/factor analysis. The results indicate that the natural factor has a dominant influence in temporal groups. In order to recognize the discriminatory water quality parameters, a discriminant analysis (DA) was carried out. Conducting the DA enabled a significant reduction in the data set by the extraction of two parameters (the water temperature and electrical conductivity). Furthermore, the artificial neural network technique was used for testing the possibility of predicting changes in the values of the discriminant factors in the monitoring periods. The reliability of this method for the prediction of temporal variations of both extracted parameters within all temporal clusters has been proven.  相似文献   
866.
Effective water quality management depends on enactment of appropriately designed monitoring programs to reveal current and forecasted conditions. Because water quality conditions are influenced by numerous factors, commonly measured attributes such as total phosphorus (TP) can be highly temporally varying. For highly varying processes, monitoring programs should be long-term and periodic quantitative analyses are needed so that temporal trends can be distinguished from stochastic variation, which can yield insights into potential modifications to the program. Using generalized additive mixed modeling, we assessed temporal (yearly and monthly) trends and quantified other sources of variation (daily and subsampling) in TP concentrations from a multidecadal depth-specific monitoring program on Big Platte Lake, Michigan. Yearly TP concentrations decreased from the late 1980s to late 1990s before rebounding through the early 2000s. At depths of 2.29 to 13.72 m, TP concentrations have cycled around stationary points since the early 2000s, while at the surface and depths ≥?18.29 concentrations have continued declining. Summer and fall peaks in TP concentrations were observed at most depths, with the fall peak at deeper depths occurring 1 month earlier than shallower depths. Daily sampling variation (i.e., variation within a given month and year) was greatest at shallowest and deepest depths. Variation in subsamples collected from depth-specific water samples constituted a small fraction of total variation. Based on model results, cost-saving measures to consider for the monitoring program include reducing subsampling of depth-specific concentrations and reducing the number of sampling depths given observed consistencies across the program period.  相似文献   
867.
Chemical coagulation and adsorption, despite many drawbacks, are actually the main techniques used for the removal of pollutants from aqueous solution; however, these techniques are becoming ineffective due to the exponential increase in the amount and complexity of discharged pollutants; thus, the sludge treatment process became a more complex challenge. The present study focuses on the way to reduce the quantity of sludge formed during the removal of Ridomil Gold, a widely used pesticide-fungicide in agriculture. Results revealed that pre-treatment of initial waste solution by the gliding arc (Glidarc), a source of non-thermal plasma, leads to a significant reduction of the sludge formed during the coagulation treatment. For a 20-min pre-treated effluent Glidarc followed by chemical coagulation, there was a reduction in the volume of sludge formed in the order of 90 and 80% for alum and ferric sulfate coagulants respectively without reducing the performance of pesticide removal. Therefore, there is a positive synergism between treatment by chemical coagulation and plasma treatment. These results suggest that the Glidarc can be an effective solution for the reduction of sludge obtained during treatment by coagulation.  相似文献   
868.
Contamination of the ocean by heavy metals may have ecosystem-wide implications because they are toxic even if present in trace levels, and the relative ease of their bioaccumulation by marine organisms may affect human health, primarily through consumption of contaminated fish. We evaluated metal concentrations in six different popular edible fish species and estimated the potential health risks from consumption of contaminated fish. There was no correlation between fish length and average metal accumulation although the fish species tended to accumulate significantly more Al and Zn (P?<?0.05) than any of the other metals. Significantly higher Mn concentrations were found in fish gills compared to other body parts in all fish species. Bronze seabream, Catface rockcod, and Slinger seabream had significantly higher mean Cr concentration in the liver than in either the tissues or gills. The highest concentration of Zn in fleshy tissue was in Horse mackerel (56.71 μg g?1) followed by Bronze seabream (31.07 μg g?1). Al levels ranged from 5.6 μg g?1 in Atlantic mackerel to 35.04 μg g?1 in Horse mackerel tissue while Cu and Cr concentrations were highest in the tissues of Horse mackerel (6.83 and 1.81 μg g?1, respectively) followed by Santer seabream (3.15; 1.09 μg g?1) and Bronze seabream (3.09; 1.30 μg g?1), respectively. The highest tissue concentration of Mn was detected in Bronze seabream (8.23 μg g?1) followed by Catface rockcod (6.05 μg g?1) and Slinger seabream (5.21 μg g?1) while Pb concentrations ranged from a high of 8.44 μg g?1 in Horse mackerel to 1.09 μg g?1 in Catface rockcod. However, the estimated potential health risks from fish consumption as determined by the target hazard quotient (THQ) and hazard index (HI) were significantly lower than 1, implying that metals were not present in sufficiently high quantities to be of any health and/or food and security concern in the studied fishes.  相似文献   
869.
The study on the spatial distribution of forest soil organic carbon (SOC) is of great significance for accurate assessment of carbon storage in forest ecosystems. In the present study, by taking eight kinds of forest soils of Mountain Lushan in the subtropical area as the research object, we studied the spatial distribution characteristics of SOC in this mountainous area. The results showed that the SOC content and SOC density (SOCD) of main forest types in the Mountain Lushan were lower than the national and the world average. The soil layer of Lushan forest was thinner, and the SOC and active SOC (ASOC) contents of different forest types and SOCDs are the highest in the surface soil. SOCD of the topsoil accounts for 32.64–54.03% of the total SOCD in the whole soil profile. Surface litter is an important source of SOC, and the different vegetation types are the important reason for the different spatial distribution of SOC in this area. Soil SOC contents in the high-altitude forest (bamboo forest, deciduous broadleaf forest, Pinus taiwanensis forest, evergreen-deciduous forest, and coniferous-broadleaved mixed forest) were higher than those in the low-altitude forest (evergreen broadleaf forest, shrub, and Pinus massoniana forest). However, the difference in SOC content exhibited at the altitude gradient is significantly lower than that in SOC in the soil profile. This indicates that both soil depth and elevation are the important factors that affected SOC distribution. However, the influence of soil depth on spatial distribution of SOC may be more complex than that of altitude. Vegetation types and soil properties are the main reasons for the large differences of reduction rate in the contents of SOC and ASOC.  相似文献   
870.
Water pollution is the root cause for many diseases in the world. It is necessary to measure water quality using sensors for prevention of water pollution. However, the related works remain the problems of communication, mobility, scalability, and accuracy. In this paper, we propose a new Supervisory Control and Data Acquisition (SCADA) system that integrates with the Internet of Things (IoT) technology for real-time water quality monitoring. It aims to determine the contamination of water, leakage in pipeline, and also automatic measure of parameters (such as temperature sensor, flow sensor, color sensor) in real time using Arduino Atmega 368 using Global System for Mobile Communication (GSM) module. The system is applied in the Tirunelveli Corporation (Metro city of Tamilnadu state, India) for automatic capturing of sensor data (pressure, pH, level, and energy sensors). SCADA system is fine-tuned with additional sensors and reduced cost. The results show that the proposed system outperforms the existing ones and produces better results. SCADA captures the real-time accurate sensor values of flow, temperature, and color and turbidity through the GSM communication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号