首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1725篇
  免费   18篇
  国内免费   44篇
安全科学   22篇
废物处理   120篇
环保管理   174篇
综合类   149篇
基础理论   310篇
环境理论   2篇
污染及防治   580篇
评价与监测   314篇
社会与环境   110篇
灾害及防治   6篇
  2023年   61篇
  2022年   174篇
  2021年   126篇
  2020年   25篇
  2019年   49篇
  2018年   86篇
  2017年   93篇
  2016年   109篇
  2015年   46篇
  2014年   80篇
  2013年   189篇
  2012年   80篇
  2011年   90篇
  2010年   73篇
  2009年   63篇
  2008年   82篇
  2007年   63篇
  2006年   69篇
  2005年   38篇
  2004年   27篇
  2003年   21篇
  2002年   35篇
  2001年   11篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1979年   2篇
  1966年   1篇
  1965年   2篇
  1964年   2篇
  1962年   2篇
  1961年   4篇
  1958年   3篇
  1957年   3篇
  1956年   2篇
  1955年   4篇
  1953年   1篇
排序方式: 共有1787条查询结果,搜索用时 31 毫秒
661.
Environmental Chemistry Letters - Developing environmentally benign synthetic protocols such as reaction in water is a major challenge. However, many of the known methods carried out in an...  相似文献   
662.
Environmental Chemistry Letters - The release of recalcitrant dyes into the biosphere is a threat because of pollution and environmental health issues. Adsorption using commercial activated carbon...  相似文献   
663.
Environmental Chemistry Letters - Effective technologies and materials are needed for environmental detoxification and clean energy production. The actual photocatalytic technology is largely...  相似文献   
664.
Environment Systems and Decisions - Organizational and technical approaches have proven successful in increasing the performance and preventing risks at socio-technical systems at all scales....  相似文献   
665.
Environmental Fluid Mechanics - Predicting the evolution of environmental dispersion of settling particles in wetland flows has a wide range of applications in ecological engineering. In the...  相似文献   
666.
• PM2.5-related deaths were estimated to be 227 thousand in BTH & surrounding regions. • Local emissions contribute more to PM2.5-related deaths than PM2.5 concentration. • Local controls are underestimated if only considering its impacts on concentrations. • Rural residents suffer larger impacts of regional transport than urban residents. • Reducing regional transport benefits in mitigating environmental inequality. The source-receptor matrix of PM2.5 concentration from local and regional sources in the Beijing-Tianjin-Hebei (BTH) and surrounding provinces has been created in previous studies. However, because the spatial distribution of concentration does not necessarily match with that of the population, such concentration-based source-receptor matrix may not fully reflect the importance of pollutant control effectiveness in reducing the PM2.5-related health impacts. To demonstrate that, we study the source-receptor matrix of the PM2.5-related deaths instead, with inclusion of the spatial correlations between the concentrations and the population. The advanced source apportionment numerical model combined with the integrated exposure–response functions is used for BTH and surrounding regions in 2017. We observed that the relative contribution to PM2.5-related deaths of local emissions was 0.75% to 20.77% larger than that of PM2.5 concentrations. Such results address the importance of local emissions control for reducing health impacts of PM2.5 particularly for local residents. Contribution of regional transport to PM2.5-related deaths in rural area was 22% larger than that in urban area due to the spatial pattern of regional transport which was more related to the rural population. This resulted in an environmental inequality in the sense that people staying in rural area with access to less educational resources are subjected to higher impacts from regional transport as compared with their more resourceful and knowledgeable urban compatriots. An unexpected benefit from the multi-regional joint controls is suggested for its effectiveness in reducing the regional transport of PM2.5 pollution thus mitigating the associated environmental inequality.  相似文献   
667.
Fluoride contamination in the groundwater has got great attention in last few decades due to their toxicity, persistent capacity and accumulation in human bodies. There are several sources of fluoride in the environment and different pathways to enter in the drinking water resources, which is responsible for potential effect on human health. Presence of high concentration of fluoride ion in groundwater is a major issue and it makes the water unsuitable for drinking purpose. Availability of fluoride in groundwater indicates various geochemical processes and subsurface contamination of a particular area. Fluoride-bearing aquifers, geological factors, rate of weathering, ion-exchange reaction, residence time and leaching of subsurface contaminants are major responsible factors for availability of fluoride in groundwater. In India, several studies have reported that the groundwater of several states are contaminated with high fluoride. The undesirable level of fluoride in groundwater is one of the most natural groundwater quality problem, which affects large portion of arid and semiarid regions of India. Rajasthan, Andhra Pradesh, Telangana, Tamil Nadu, Gujarat, and West Bengal are the relatively high-fluoride-contaminated states in India. Chronic ingestion of high doses of fluoride-rich water leads to fluorosis on human and animal. Over 66 million Indian populations are at risk due to excess fluoride-contaminated water. Therefore, groundwater contamination subject to undesirable level of fluoride needs urgent attention to understand the role of geochemistry, hydrogeology and climatic factors along with anthropogenic inputs in fluoride pollution.  相似文献   
668.
Environmental Geochemistry and Health - This study describes spatiotemporal patterns from October 2015 to September 2016 for PM2.5 mass and carbon measurements in rural (Kosmarra), urban (Raipur),...  相似文献   
669.
This study derives an analytical solution of the advection–dispersion (AD) equation commonly used to describe the transport of pollutants in a semi-infinite homogeneous aquifer. When an extra constant source term is added to the AD equation, it changes the solution of the equation. The AD equation is solved analytically using Laplace transform. Also, the equation is solved numerically using an explicit finite difference method and its stability condition is presented with the aid of matrix method. For the solution of the AD equation the following considerations are made: (1) The dispersion and velocity are considered as time-dependent; (2) dispersion is expressed as directly proportional to the square of velocity; (3) there is also diffusion; (4) there is some initial concentration and the aquifer domain is, therefore, not pollutant-free; (5) There is a time-dependent exponentially decreasing input source; and (6) the concentration gradient is assumed to be zero at the exit boundary. It is found that the contaminant concentration decreases with time contrary to what happens when the extra term is not included.  相似文献   
670.
Nowadays, the water ecosystem is being polluted due to the rapid industrialization and massive use of antibiotics, fertilizers, cosmetics, paints, and other chemicals. Chemical oxidation is one of the most applied processes to degrade contaminants in water. However, chemicals are often unable to completely mineralize the pollutants. Enhanced pollutant degradation can be achieved by Fenton reaction and related processes. As a consequence, Fenton reactions have received great attention in the treatment of domestic and industrial wastewater effluents. Currently, homogeneous and heterogeneous Fenton processes are being investigated intensively and optimized for applications, either alone or in a combination of other processes. This review presents fundamental chemistry involved in various kinds of homogeneous Fenton reactions, which include classical Fenton, electro-Fenton, photo-Fenton, electro-Fenton, sono-electro-Fenton, and solar photoelectron-Fenton. In the homogeneous Fenton reaction process, the molar ratio of iron(II) and hydrogen peroxide, and the pH usually determine the effectiveness of removing target pollutants and subsequently their mineralization, monitored by a decrease in levels of total organic carbon or chemical oxygen demand. We present catalysts used in heterogeneous Fenton or Fenton-like reactions, such as H2O2–Fe3+(solid)/nano-zero-valent iron/immobilized iron and electro-Fenton-pyrite. Surface properties of heterogeneous catalysts generally control the efficiency to degrade pollutants. Examples of Fenton reactions are demonstrated to degrade and mineralize a wide range of water pollutants in real industrial wastewaters, such as dyes and phenols. Removal of various antibiotics by homogeneous and heterogeneous Fenton reactions is exemplified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号