首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
废物处理   1篇
环保管理   5篇
综合类   4篇
基础理论   13篇
污染及防治   8篇
评价与监测   4篇
社会与环境   1篇
  2022年   2篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   4篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有37条查询结果,搜索用时 78 毫秒
11.
A methodology for optimized contaminated land investigation (OCLI) is described that balances the uncertainty of measurements against the cost of taking the measurements and the financial losses that may arise from misclassification of the land. Uncertainty from the sources of both field sampling and chemical analysis is estimated using existing techniques, based on the taking of duplicated samples. The actual costs of sampling and analysis and the expected costs that could arise from either 'false positive' or 'false negative' classification of areas of land were estimated. A loss function was constructed that calculates the expectation of financial loss that will arise for a given uncertainty of measurement. The function shows a clear minimum value of cost at an optimal value of uncertainty. Application of this OCLI technique to two case studies demonstrated this minimum value. Below the optimum value of uncertainty, the costs increased due to higher measurement costs. Above the optimum, the costs increased due to increasing risk of factors such as unnecessary remediation or potential litigation over undetected contamination. Many areas for further development of OCLI are identified, but the technique is demonstrated as a useful new approach to judging fitness-for-purpose of such measurements.  相似文献   
12.
Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm‐ and tidal‐related flooding of spatially extensive coastal marshes within the north‐central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L‐Band SAR (PALSAR) (L‐band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C‐band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006‐2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR‐ and ASAR‐based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference‐scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR‐based inundation accuracies averaged 84% (= 160), while ASAR‐based mapping accuracies averaged 62% (= 245).  相似文献   
13.
Uncertainty in the assessment of hazard,exposure and risk   总被引:1,自引:0,他引:1  
The terminology, concepts and current approaches to uncertainty in the assessment of hazard, exposure and risk are reviewed. Five generic questions are discussed on uncertainty, including sources, levels, when and how it should be dealt with or reduced, what are our gaps in understanding and how they can be addressed. A case study of lead exposure of children in Lavrion, Greece, is used to exemplify these questions and possible answers. Estimation of uncertainty may be improved by the use of interorganisational studies to capture sources of uncertainty that are often overlooked. Gaps identified in our understanding of uncertainty include: a limitation in the availability of basic measurements, a lack of knowledge of the environmental processes, an inability to predict the effects of mixtures, the aetiology of disease and devising procedures for optimal resource allocation in impact assessment.  相似文献   
14.
Aluminium concentrations in NIST (formally NBS) Standard Reference Material Tomato Leaves and Citrus Leaves were determined by ICP-AES after acid digestion. The normal total acid attack (nitric and perchloric acids) gave very low recovery (40%) of Al in NIST tomato leaves, but not for citrus leaves. The contribution of Al from Al-rich soil particles in both tomato leaves and citrus leaves was estimated semi-quantitatively by computer-controlled EPMA. The Al held in these particles corresponded in approximate concentration to the shortfall between the acid soluble component determined in this study and the certified value. Analysis by EPMA can provide, therefore, a method of estimating Al contributed by soil contamination to plant materials. The limitations of the NIST tomato and citrus leaf reference material for the validation of methods for the determination of Al in vegetation are demonstrated.  相似文献   
15.
The effects of soil pH and other soil properties on the uptake of AI by soybean plants have been investigated in a greenhouse experiment. Six soils were compared that were developed over six contrasting bedrock types ranging widely in their AI content and other chemical and physical characteristics, namely Oxford Clay, Chalk, Lower Lias Clay, Devonian Shale, Granite and Lower Greensand. Soil pH varied naturally between soil types and each soil was also amended to give two other pH levels using elemental sulphur and/or calcium carbonate. AI concentrations in various parts of the soybean plants were determined by ICP-AES after acid digestion. The AI solubility in the soils and hence its availability to the plants was estimated using a number of different reagents designed to extract different forms of AI. The AI concentration measured in the soybean leaves was found to be predicted most accurately by the ‘available’ AI extracted from soils by 0.02 M CaCl2. The relationship appears to the linear, with a correlation coefficient of 0.97 (p <0.01). The AI content of the leaves increases with decreasing soil pH. The relationship is non-linear with a marked increase in leaf AI for soils with pH <4.4. The amounts of ‘plant-available’ AI in the soils extracted with 0.02 M CaCl2 was much less than that extracted with 0.05 M EDTA, although both increased markedly with decreasing soil pH. The amount of AI measured in the soybean plants was directly related to both the ‘available’ forms of AI in the soils, and also to the pH of the soils. Soil pH was identified as a major factor that controls the uptake of Al from soil into the soybean plant.  相似文献   
16.
Models for the analysis of habitat selection data incorporate covariates in an independent multinomial selections model (McCracken et al. 1998) Ramsey and Usner 2003 and an extension of that model to include a persistence parameter (2003). In both cases, all parameters are assumed to be fixed through time. Radio telemetry data collected for habitat selection studies typically consist of animal relocations through time, suggesting the need for an extension to these models. We use a Bayesian approach that allows for the habitat selection probabilities, persistence parameter, or both, to change with season. These extensions are particularly important when movement patterns are expected to differ seasonally and/or when availabilities of habitats change throughout the study period due to weather or migration. We implement and compare the models using radio telemetry data for westslope cutthroat trout in two streams in eastern Oregon.  相似文献   
17.
A direct aqueous supercritical fluid extraction (SFE) system using carbon dioxide provides a sustainable means by which a vast range of industries may continue to depend on well established infrared (IR) techniques to determine oil-in-water. The SFE-IR method provides an environmentally friendly substitute for current national standard IR reference methods for measuring oil-in-water that rely on using increasingly restricted ozone depleting solvents whose manufacture is being phased out in accordance with international law. The SFE-IR analysis of a 500 mL water sample can be accomplished in 15 min. A rapid on-line SFE-IR calibration method has been implemented. With this calibration method, SFE-IR accuracy for determining diesel oil in 500 mL spiked water samples using single wave number measurement was 86.0%–98.8% with precision (RSD) ranging from 2.5%–7.0%. Using a general purpose calculation which involves measuring infrared absorbance values at three di erent wave numbers, SFE-IR method accuracy for determining diesel oil in 500 mL spiked water samples was 83.7%–92.2% with RSD 1.0%–9.3%. Data is presented that indicates current long established national standard IR reference methods involving three wave number calculations should be reviewed since, without careful consideration, the inclusion of calculated aromatic hydrocarbon species contributions to final oil-in-water concentration values may provide less accurate results.  相似文献   
18.
Accelerated soil erosion is an aspect of dryland degradation that is affected by repeated intense drought events and land management activities such as commercial livestock grazing. A soil stability index (SSI) that detects the erosion status and susceptibility of a landscape at the pixel level, i.e., stable, erosional, or depositional pixels, was derived from the spectral properties of an archived time series (from 1972 to 1997) of Landsat satellite data of a commercial ranch in northeastern Utah. The SSI was retrospectively validated with contemporary field measures of soil organic matter and erosion status that was surveyed by US federal land management agencies. Catastrophe theory provided the conceptual framework for retrospective assessment of the impact of commercial grazing and soil water availability on the SSI. The overall SSI trend was from an eroding landscape in the early drier 1970s towards stable conditions in the wetter mid-1980s and late 1990s. The landscape catastrophically shifted towards an extreme eroding state that was coincident with the “The Great North American Drought of 1988”. Periods of landscape stability and trajectories toward stability were coincident with extremely wet El Niño events. Commercial grazing had less correlation with soil stability than drought conditions. However, the landscape became more susceptible to erosion events under multiple droughts and grazing. Land managers now have nearly a year warning of El Niño and La Niña events and can adjust their management decisions according to predicted landscape erosion conditions.  相似文献   
19.
20.
ABSTRACT

Styrene is a designated hazardous air pollutant, per the 1990 Clean Air Act Amendments. It is also a tropospheric ozone precursor. Fiber-reinforced plastics (FRP) fabrication is the primary source of anthropogenic styrene emissions in the United States. This paper describes an empirical model designed to predict styrene emission factors for selected FRP fabrication processes. The model highlights 10 relevant parameters impacting styrene emission factors for FRP processes, and helps identify future areas of FRP pollution prevention (P2) research. In most cases, the number of these parameters with greatest impact on styrene emission factors can be limited to four or five. Seven different emission studies were evaluated and used as model inputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号