首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   0篇
  国内免费   9篇
安全科学   12篇
废物处理   19篇
环保管理   9篇
综合类   23篇
基础理论   34篇
污染及防治   81篇
评价与监测   18篇
社会与环境   9篇
灾害及防治   1篇
  2023年   6篇
  2022年   28篇
  2021年   18篇
  2020年   5篇
  2019年   12篇
  2018年   5篇
  2017年   12篇
  2016年   9篇
  2015年   6篇
  2014年   16篇
  2013年   17篇
  2012年   12篇
  2011年   9篇
  2010年   5篇
  2009年   5篇
  2008年   13篇
  2007年   6篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   5篇
  2002年   1篇
  2000年   1篇
  1989年   1篇
  1985年   1篇
  1968年   1篇
  1966年   1篇
  1964年   2篇
排序方式: 共有206条查询结果,搜索用时 484 毫秒
41.
Environmental Science and Pollution Research - Styrene is one of the essential components in making thousands of everyday products. Occupational exposure to styrene causes pulmonary, neurological,...  相似文献   
42.
43.
44.
45.
Environmental Science and Pollution Research - This research paper presents the results of an experimental investigation of the degradation of three different contaminants including progesterone...  相似文献   
46.
Environmental Science and Pollution Research - The present study biomonitored the placental polychlorinated biphenyl (PCB) concentrations in women from Punjab Province, Pakistan, that provides the...  相似文献   
47.
Dumping of solid waste in a non-engineered landfill site often leads to contamination of ground water due to leachate percolation into ground water. The present paper assesses the pollution potential of leachate generated from three non-engineered landfill sites located in the Tricity region (one each in cities of Chandigarh, Mohali and Panchkula) of Northern India and its possible effects of contamination of groundwater. Analysis of physico-chemical properties of leachate from all the three landfill sites and the surrounding groundwater samples from five different downwind distances from each of the landfill sites were collected and tested to determine the leachate pollution index (LPI) and the water quality index (WQI). The Leachate Pollution Index values of 26.1, 27 and 27.8 respectively for landfill sites of Chandigarh (CHD), Mohali (MOH) and Panchkula (PKL) cities showed that the leachate generated are contaminated. The average pH values of the leachate samples over the sampling period (9.2 for CHD, 8.97 for MOH and 8.9 for PKL) show an alkaline nature indicating that all the three landfill sites could be classified as mature to old stage. The WQI calculated over the different downwind distances from the contamination sites showed that the quality of the groundwater improved with an increase in the downwind distance. Principal component analysis (PCA) carried out established major components mainly from natural and anthropogenic sources with cumulative variance of 88% for Chandigarh, 87.1% for Mohali and 87.8% for Panchkula. Hierarchical cluster analysis (HCA) identifies three distinct cluster types for the groundwater samples. These clusters corresponds to a relatively low pollution, moderate pollution and high pollution regions. It is suggested that all the three non-engineered landfill sites be converted to engineered landfill sites to prevent groundwater contamination and also new sites be considered for construction of these engineered landfill sites as the present dumpsites are nearing the end of their lifespan capacity.  相似文献   
48.
49.
Batch experiments were conducted on ground water samples collected from a site contaminated with Cr(VI) to evaluate the redox potential of zero-valent iron (Fe0) nanoparticles for remediation of Cr(VI)-contaminated ground water. For this, various samples of contaminated ground water were allowed to react with various loadings of Fe0 nanoparticles for a reaction period of 60 min. Data showed 100% reduction of Cr(VI) in all the contaminated ground water samples after treatment with 0.20 gL−1 of Fe0 nanoparticles. An increase in the reduction of Cr(VI) from 45% to 100% was noticed with the increase in the loading of Fe0 nanoparticles from 0.05 to 0.20 gL−1. Reaction kinetics of Cr(VI) reduction showed pseudo first-order kinetics with rate constant in the range of 1.1 × 10−3 to 3.9 × 10−3 min−1. This work demonstrates the potential utility of Fe0 nanoparticles in treatment and remediation of Cr(VI)-contaminated water source.  相似文献   
50.
Conversion of broad-spectrum organic waste into carbonaceous biochar has gained enormous interest in past few years. The present study aims to characterize feedstock (FS), i.e. bagasse (Bg), bamboo (Bm) and biochar (BC), i.e. baggase biochar (BBg), bamboo biochar (BBm) and tyre biochar (Ty). Significant changes in elemental composition, atomic ratio, proximate analyses, mineral content and heavy metal content were observed which was well supported by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis. Impregnation with ferric hydroxide was done, and resultant modified biochars (MBC), i.e. iron-impregnated baggase biochar (FeBBg), iron-impregnated bamboo biochar (FeBBm) and iron-impregnated tyre biochar (FeTy), along feedstock and biochar were used for PO4 3?, Pb, Hg and Cu adsorption. In general, BBg, FeBBg, BBm, FeBBm, Ty and FeTy were found to adsorb PO4 3?, Pb, Hg and Cu better than Bg and Bm, except in few cases. Results from adsorption experiments were fitted into Langmuir, Freundlich and Temkin models of isotherms and pseudo-first-order, pseudo-second-order and Elovich models of kinetics. Result of batch study adsorption revealed that maximum adsorption of PO4 3?, Pb, Hg and Cu was done by FeBBg (adsorption mechanism explained by Freundlich model), FeTy (Temkin model), Ty (Langmuir model) and BBm (Langmuir model) respectively. According to R 2 values, pseudo-first-order reaction was well suited to PO4 3?, Pb, Hg and Cu adsorption. The optimum pH for maximum adsorption was observed to be 7.4 for PO4 3?, 5 for Cu and 6 for Pb and Hg respectively  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号