ABSTRACT: Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa Clara‐Calleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate‐driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/°C, compared to 0.9 m/°C in observations. This close agreement shows that the GCM‐RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM‐RGWM combination could be used for planning purposes and — when the GCM forecast skills are adequate — for near term predictions. 相似文献
Subsurface drainage, a water management practice used to remove excess water from poorly drained soils, can transport substantial amounts of NO3 from agricultural crop production systems to surface waters. A field study was conducted from the fall of 1986 through 1994 on a tile-drained Canisteo clay loam soil (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) to determine the influence of time of N application and use of nitrapyrin [NP; 2-chloro-6-(trichloromethyl) pyridine] on NO3 losses from a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Four anhydrous ammonia treatments [fall N, fall N + NP, spring preplant N, and split N (40% preplant and 60% sidedress)] were replicated four times and applied at 150 kg N ha(-1) for corn on individual drainage plots. Sixty-two percent of the annual drainage and 69% of the annual NO3 loss occurred in April, May, and June. Flow-weighted NO3-N concentrations in the drainage water were two to three times greater in the two years following the three-year dry period compared with preceding and succeeding years. Nitrate N concentrations and losses in the drainage from corn were greatest for fall N with little difference among the other three N treatments. Nitrate losses from soybean were affected more by residual soil NO3 following corn than by the N treatments per se. Averaged across the four rotation cycles, flow-normalized NO3-N losses ranked in the order: fall N > split N > spring N = fall N + NP. Under these conditions NO3 losses from a corn-soybean rotation into subsurface drainage can be reduced by 13 to 18% by either applying N in the spring or using NP with late fall-applied ammonia. 相似文献
The electrochemical oxidation (EO) of environmentally persistent perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) with a Magnéli phase Ti4O7 electrode was investigated in this study. After 3 hours (hr) of electrolysis, 96.0 percent of PFOA (10 milligrams per liter [mg/L] in 100 milliliters [mL] 100 millimolar [mM] Na2SO4 solution) was removed following pseudo first‐order kinetics (k = 0.0226 per minute [min]) with the degradation half‐life of 30.7 min. Under the same treatment conditions, PFOS (10 mg/L in 100 mL 100 mM Na2SO4 solution) removal reached 98.9 percent with a pseudo first‐order degradation rate constant of 0.0491/min and the half‐life of 14.1 min. Although, the degradation of PFOA was slower than PFOS, when subjected to EO treatment in separate solutions, PFOA appeared to degrade faster than PFOS when both are present in the same solution, indicating possible competition between PFOA and PFOS during Ti4O7 anode‐based EO treatment with PFOA having the competitive advantage. Moreover, the EO treatment was applied to degrade highly concentrated PFOA (100.5 mg/L) and PFOS (68.6 mg/L) in ion‐exchange resin regenerant (still bottom) with high organic carbon content (15,800 mg/L). After 17‐hr electrolysis, the total removal of PFOA and PFOS was 77.2 and 96.5 percent, respectively, and the fluoride concentration increased from 0.84 mg/L to 836 mg/L. Also, the dark brown color of the original solution gradually faded during EO treatment. In another test using still bottom samples with lower total organic carbon (9,880 mg/L), the PFOA (15.5 mg/L) and PFOS (25.5 mg/L) concentrations were reduced to levels below the limits of quantification after 16‐hr treatment. In addition, the performance of EO treatment using different batch reactor setups was compared in this study, including one‐sided (one anode:one cathode) and two‐sided (one anode:two cathodes) setups. The two‐sided reactor configuration significantly enhanced the degradation efficiency, likely due to the larger anode area available for reactions. 相似文献
This research focused on life cycle assessment (LCA) and techno-economic analysis (TEA) comparisons of polylactic acid (PLA) composites, in order to compare organic to inorganic fillers. Organic fillers included DDGS, flax, hemp, rice husks, and wood, and were compared against inorganic fillers (glass and talc) for PLA-based composites. This study utilized LCAI and TEA methodology to estimate and quantify costs, emissions, and energy intensity (EI) associated with material acquisition, processing, transport, and end-of-life treatment used during plastic composite production. Emission categories analyzed include global warming potential (GWP), air acidification (AA), air eutrophication (AE), water eutrophication (WE), ozone layer depletion (OLD), air smog (AS), high carcinogens (HC), and high non-carcinogens (HNC). To achieve a “Cradle-to-Grave” perspective, two models were meshed, the plastic comparator (PC) and EIO-LCA (EIO), to simulate the EI and emissions associated over the entire life cycle. Based assumptions used, this research has shown that utilizing land fill end-of-life treatment and glass filler composite was the most environmentally harmful option, and maintained the highest economic impact, for all impact categories during PLA composite production. Alternatively, both DDGS and wood filler composites paired with recycling end-of-life treatment were shown to be the least environmentally damaging method and incurred the lowest cost of all PLA composites considered. This study also suggests that utilization of organic bio-based fillers produces a lower economic/environmental impact, and EI, compared to utilization of inorganic fillers in PLA composites. Accordingly, this research has demonstrated the impact of LCA/TEA paired analysis when assessing the bioplastic and biocomposite processing, which may be utilized as a precursor for parallel research undertakings. 相似文献
The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions.
Implications: Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions. 相似文献
Forced-gradient groundwater tracer tests may be conducted using a variety of hydraulic schemes, so it is useful to have simple semi-analytic models available that can examine various injection/withdrawal scenarios. Models for radially convergent tracer tests are formulated here as transfer functions, which allow complex tracer test designs to be simulated by a series of simple mathematical expressions. These mathematical expressions are given in Laplace space, so that transfer functions may be placed in series by simple multiplication. Predicted breakthrough is found by numerically inverting the composite transfer function to the time-domain, using traditional computer programs or commercial mathematical software. Transport is assumed to be dictated by a radially convergent or uniform flow field, and is based upon an exact first-passage-time solution of the backward Fokker–Planck equation. These methods are demonstrated by simulating a weak-dipole tracer test conducted in a fractured granite formation, where mixing in the injection borehole is non-ideal. 相似文献
Discharge of contaminated ground water may serve as a primary and on-going source of contamination to surface water. A field investigation was conducted at a Superfund site in Massachusetts, USA to define the locus of contaminant flux and support source identification for arsenic contamination in a pond abutting a closed landfill. Subsurface hydrology and ground-water chemistry were evaluated in the aquifer between the landfill and the pond during the period 2005-2009 employing a network of wells to delineate the spatial and temporal variability in subsurface conditions. These observations were compared with concurrent measures of ground-water seepage and surface water chemistry within a shallow cove that had a historical visual record of hydrous ferric oxide precipitation along with elevated arsenic concentrations in shallow sediments. Barium, presumably derived from materials disposed in the landfill, served as an indicator of leachate-impacted ground water discharging into the cove. Evaluation of the spatial distributions of seepage flux and the concentrations of barium, calcium, and ammonium-nitrogen indicated that the identified plume primarily discharged into the central portion of the cove. Comparison of the spatial distribution of chemical signatures at depth within the water column demonstrated that direct discharge of leachate-impacted ground water was the source of highest arsenic concentrations observed within the cove. These observations demonstrate that restoration of the impacted surface water body will necessitate control of leachate-impacted ground water that continues to discharge into the cove. 相似文献
Our research aims to identify longline fishing gear modifications that can improve fishing selectivity and reduce incidental capture of non-target species. Catch rates and anatomical hook locations (AHL) were compared when using a 14/0 standard ??control?? circle hook with a 0° offset and an experimental ??appendage?? hook in a Costa Rican longline fishery. With the appendage, the maximum dimension of the appendage hook was increased by 10% and the minimum dimension of the hook by 19%. A total of 1,811 marine animals were captured during five fishing trips. By taxonomic groups, sea turtles represented the largest total catch (27%), followed by sharks (26%), rays (25%), mahimahi (Coryphaena hippurus) (12%), and tunas and billfish (10%). Non-target and discard species, such as rays and sea turtles, accounted for over half of the total catch. Catch per unit effort (CPUE; number of individuals per 1,000 hooks) was higher with control hooks compared to appendage hooks for all species?? categories except rays; appendage hooks caught 52% fewer sea turtles and 23% fewer tunas and billfish than standard hooks, which represents a significant reduction in bycatch of endangered and other species. No differences were found in the AHL for sea turtles, suggesting use of the appendage may not incur additional advantages regarding turtles?? post-release survivorship. Despite lower catch rates for marketable species, such as sharks and mahimahi, use of the appendage resulted in dramatic reductions in catch rates of sea turtles. The results suggest that large scale adoption of hooks with a significantly wider hook dimension could be an effective conservation measure to maintain marine biodiversity while allowing for continued fishing. 相似文献
Molecular genetic surveys of marine fishes have revealed that some widely distributed species are actually a composite of multiple evolutionary lineages. This is apparent in the round herrings (genus Etrumeus), wherein a globally distributed taxon (Etrumeus sadina Mitchill 1814) has proven to contain at least seven valid taxa, with more likely awaiting discovery. Here, we survey evolutionary lineages of the nominal E. sadina (formerly E. teres, a junior synonym) across the southern temperate zone of Australia, a marine region divided into three biogeographic provinces based primarily on the distribution of intertidal faunas. Results from morphological and mitochondrial DNA data reveal two evolutionary lineages corresponding to eastern and southwestern provinces (d = 0.007 for cytochrome c oxidase subunit I and d = 0.017 for cytochrome b), possibly initiated by the Bassian Isthmus between Australia and Tasmania during low sea-level stands. The Australian round herring is also genetically distinct from the nearest congeneric forms in the Indian and Pacific Oceans, with a corresponding modal difference in gill-raker counts in most cases. Based on these data, we resurrect the title Etrumeus jacksoniensis for the Australian round herring. While the Bassian Isthmus may have initiated the partition of evolutionary lineages within Australia, additional oceanographic and ecological factors must reinforce this separation in order to maintain diagnostic genetic differences along a continuous temperate coastline. 相似文献