Paper sludges were traditionally landfilled or burned. Over the years, the use of paper sludges on soils has increased, as well as the concerns about their environmental effects. Therefore, the chemical characterization of paper sludges and their young (immature) compost needed to be investigated, and over 150 inorganic and organic chemicals were analyzed in de-inking paper sludge (DPS). In general, nitrogen, phosphorus and potassium contents were low but variable in raw DPS and its young compost. The contents of arsenic, boron, cadmium, cobalt, chromium, manganese, mercury, molybdenum, nickel, lead, selenium, and zinc were also low and showed low variability. However, the copper contents were above the Canadian compost regulation for unrestricted use and required a follow-up. The fatty- and resin acids, and polycyclic aromatic hydrocarbons were the organic chemicals measured at the highest concentrations. For resinic acids, care should be taken to avoid that leachates reach aquatic life. For polycyclic aromatic hydrocarbons, naphthalene should be followed until soil content reaches 0.1 microg g(-1), the maximum allowed for soil use for agricultural purposes according to Canadian Environmental Quality Guidelines. In young compost, the concentration of these chemical families decreased over time and most compounds were below the detection limits after 24 weeks of composting. In raw DPS, among the phenol, halogenated and monoaromatic hydrocarbons, dioxin and furan, and polychlorinated biphenyl families, most compounds were below the detection limits. The raw DPS and its young compost do not represent a major threat for the environment but can require an environmental follow-up. 相似文献
It has been frequently demonstrated that mercury (Hg) concentrations in fish rise in newly constructed hydroelectric reservoirs in the Northern Hemisphere. In the present work, we studied whether similar effects take place also in a tropical upland reservoir during impoundment and discuss possible causes and implications. Total Hg concentrations in fish and several soil and water parameters were determined before and after flooding at Rio Manso hydroelectric power plant in western Brazil. The Hg concentrations in soil and sediment were within the background levels in the region (22-35 ng g(-1) dry weight). There was a strong positive correlation between Hg and carbon and sulphur in sediment. Predatory fish had total Hg concentrations ranging between 70 and 210 ng g(-1) f.w. 7 years before flooding and between 72 and 755 ng g(-1) f.w. during flooding, but increased to between 216 and 938 ng g(-1) f.w. in the piscivorous and carnivorous species Pseudoplatystoma fasciatum, cachara, and Salminus brasiliensis, dourado, 3 years after flooding. At the same time, concentrations of organic carbon in the water increased and oxygen concentrations decreased, indicating increased decomposition and anoxia as contributing to the increased Hg concentrations in fish. The present fish Hg concentrations in commonly consumed piscivorous species are a threat to the health of the population dependent on fishing in the dam and downstream river for sustenance. Mercury exposure can be reduced by following fish consumption recommendations until fish Hg concentrations decrease to a safe level. 相似文献
Polylactic acid (PLA) and thermoplastic starch (TPS) are biodegradable polymers of biological origin, and the mixture of these polymers has been studied due to the desirable mechanical properties of PLA and the low processing cost of TPS. However, the TPS/PLA combination is thermodynamically immiscible due to the poor interfacial interaction between the hydrophilic starch granules and the hydrophobic PLA. To overcome these limitations, researchers studied the modification, processing, and properties of the mixtures as a strategy to increase the compatibility between phases. This review highlights recent developments, current results, and trends in the field of TPS/PLA-based compounds during the last two decades, with the main focus of improving the adhesion between the two components. The TPS/PLA blends were classified as plasticized, compatible, reinforced and with nanocomposites. This article presents, based on published research, TPS/PLA combinations, considering different methods with significant improvements in mechanical properties, with promising developments for applications in food packaging and biomedicine.
Daily particle samples were collected in Chillán, Chile, at six urban locations from September 1, 2001, through September 30, 2003. Aerosol samples were collected using monitors equipped with a Sierra Andersen 246-b cyclone inlet on Teflon filters. Average concentrations of coarse particulate matter (PM10) for the 2001-2003 period ranged from 43.4 microg/m3 to 81.8 microg/m3 across the six sites. Annual PM10 concentration levels exceeded the European Union concentration limits. Mean PM10 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March). Average contributions to PM10 from organic matter, soil dust, nitrate (NO3-), elemental carbon, ammonium (NH4+), and sulfate (SO4(2-)) were 31%, 27%, 11%, 8%, 7%, and 5%, respectively. The chemical analyses indicated that carbonaceous substances were the most abundant components of PM10 in cold months, whereas crustal material was the most abundant component of PM10 during warm months. Higher concentration levels were observed in the downtown area suggesting a clear anthropogenic origin, whereas in the rural sites the source was mainly natural, such as resuspended soil dust associated with traffic on unpaved roads and agricultural activities. 相似文献
The tellinid bivalveMacomona liliana (Iredale) occurs at relatively low densities on a sandbank (Te Tau bank) in Manukau Harbour, New Zealand. Te Tau bank is dominated by polychaetes, including the tube-building spionidBoccardia syrtis (Rainer). JuvenileM. liliana are known to disperse as post-settlement juveniles by byssus-drifting. Laboratory experiments were conducted to assess whether the low abundance ofM. liliana on Te Tau bank was due to the presence ofB. syrtis, or to some reaction to the sediment itself. In particular, we, examined how juvenileM. liliana survived after exposure to Te Tau bank sediments with and without the spionid tube-mat for 1 mo in still-water conditions, and how they responded when given a choice of different sediment/tube-mat treatments in moving water. JuvenileM. liliana did not appear to have a strong aversion to settling and burrowing in sediments from Te Tau bank. Sediments without the tube-mat did not adversely affect the survivorship of the bivalves, but survival was significantly lower amongst theB. syrtis tube-mat. In the presence of a current, the juvenile bivalves settled in Te Tau bank sediments without a tube-mat, but avoided settling amongst liveB. syrtis. An artificial tube-mat enhanced settlement. Avoidance of liveB. syrtis appears to be an avoidance of the worms themselves rather than a response to the physical presence of their tubes. 相似文献
Changes in climate are occurring around the world and the effects on ecosystems will vary, depending on the extent and nature of these changes. In northern Europe, experts predict that annual rainfall will increase significantly, along with dramatic storm events and flooding in the next 50-100 years. Scotland is a stronghold of the endangered freshwater pearl mussel, Margaritifera margaritifera (L.), and a number of populations may be threatened. For example, large floods have been shown to adversely affect mussels, and although these stochastic events were historically rare, they may now be occurring more often as a result of climate change. Populations may also be affected by a number of other factors, including predicted changes in temperature, sea level, habitat availability, host fish stocks and human activity. In this paper, we explain how climate change may impact M. margaritifera and discuss the general implications for the conservation management of this species. 相似文献
ABSTRACT: An important international Niagara River management issue concerns allocation of the average 202,000 cubic feet per second river discharge for hydroelectric power and scenic purposes. Major water diversions from Niagara Falls are necessary for power production. Flow is allocated by the 1950 Niagara Treaty which is intended to maximize power benefits and preserve and enhance the scenic fals spectacle. This paper examines the extent to which the Treaty objectives have been achieved. Based on analyses of government documents, engineering data, and falls-viewing patterns, it is concluded that the 1950 Treaty led to enhancement of the falls spectacle and increased power generation. But significant additional power diversions probably are attainable without adverse effect upon the existing falls spectacle. Reducing daytime summer Horseshoe Falls flow and scheduling spring and autumn flow according to viewing patterns are possible means of increasing power diversions. Existing generating facilities could use considerably more water and the value of additional Niagara hydroelectricity is very high in terms of generation-cost savings over alternative power sources. Because of the cultural importance of the falls, Treaty modifications to permit increased power diversions are not recommended without prior public opinion sampling and on-site viewing experiments. These findings highlight the need for more careful study before long-term international agreements are concluded and illustrate the need for more flexible treaty arrangements to permit periodic adjustments for changing conditions. 相似文献
A study was conducted to determine the annual average radon concentrations in California residences, to determine the approximate fraction of the California population regularly exposed to radon concentrations of 4 pCi/l or greater, and to the extent possible, to identify regions of differing risk for high radon concentrations within the state. Annual average indoor radon concentrations were measured with passive (alpha track) samplers sent by mail and deployed by home occupants, who also completed questionnaires on building and occupant characteristics. For the 310 residences surveyed, concentrations ranged from 0.10 to 16 pCi/l, with a geometric mean of whole-house (bedroom and living room) average concentrations of 0.85 pCi/l and a geometric standard deviation of 1.91. A total of 88,000 California residences (0.8 percent) were estimated to have radon concentrations exceeding 4 pCi/l. When the state was divided into six zones based on geology, significant differences in geometric mean radon concentrations were found between several of the zones. Zones with high geometric means were the Sierra Nevada mountains, the valleys east of the Sierra Nevada, the central valley (especially the southern portion), and Ventura and Santa Barbara Counties. Zones with low geometric means included most coastal counties and the portion of the state from Los Angeles and San Bernardino Counties south. 相似文献
The removal of Cu2+, Ni2+, and Zn2+ ions from their multi-component aqueous mixture by sorption on activated carbon prepared from date stones was investigated. In the batch tests, experimental parameters were studied, including solution pH, contact time, initial metal ions concentration, and temperature. Adsorption efficiency of the heavy metals was pH-dependent and the maximum adsorption was found to occur at around 5.5 for Cu, Zn, and Ni. The maximum sorption capacities calculated by applying the Langmuir isotherm were 18.68 mg/g for Cu, 16.12 mg/g for Ni, and 12.19 mg/g for Zn. The competitive adsorption studies showed that the adsorption affinity order of the three heavy metals was Cu2+?>?Ni2+?>?Zn2+. The test results using real wastewater indicated that the prepared activated carbon could be used as a cheap adsorbent for the removal of heavy metals in aqueous solutions. 相似文献