首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   3篇
安全科学   1篇
废物处理   16篇
环保管理   22篇
综合类   9篇
基础理论   38篇
污染及防治   44篇
评价与监测   10篇
社会与环境   4篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2018年   1篇
  2017年   2篇
  2016年   7篇
  2015年   1篇
  2014年   4篇
  2013年   16篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   8篇
  2004年   7篇
  2003年   7篇
  2002年   5篇
  2001年   10篇
  2000年   3篇
  1999年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
81.
Environmental perturbations (e.g., disturbance, fertilization) commonly shift communities to a new mean state, but much less is known about their effects on the variability (dispersion) of communities around the mean, particularly when perturbations are combined. Community dispersion may increase or decrease (representing a divergence or convergence among communities) if changing environmental conditions alter species interactions or magnify small initial differences that develop during community assembly. We used data from an experimental study of disturbance and fertilization in a low-productivity grassland to test how these two perturbations affect patterns of species composition and abundance. We found that a one-time biomass reduction decreased community dispersion, which persisted over four growing seasons. Conversely, continuous fertilization increased community dispersion and, when combined with disturbance, led to the formation of three distinct community states. These results illustrate that perturbations can have differing effects on community dispersion. Attention to the variance in community responses to perturbations lends insight into how ecological interactions determine community structure, which may be missed when focusing only on mean responses. Furthermore, multiple perturbations may have complex effects on community dispersion, yielding convergence or divergence patterns that are difficult to predict based on analysis of single factors.  相似文献   
82.
The concentrations of manganese (Mn) in the Upper River Severn (the Plynlimon catchments) are examined in relation to rainfall, cloud water, throughfall, stemflow and stream water concentrations where there is over 20 years of monitoring data available. Manganese concentrations are particularly low in rainfall and cloud water, with maximum concentrations occurring under low volumes of catch due to atmospheric "washout" of contaminants and dry deposition. There is strong Mn enrichment in throughfall and stemflow and this is probably linked to cycling through the vegetation. Manganese in the streams and groundwaters are primarily supplied from within-catchment sources. The highest concentrations occur within the tree canopy probably due to element cycling and in groundwaters due to mobilisation from the rock. Manganese concentrations in streams are at their lowest during spring and summer following long dry spells, with rapid increases following subsequent rain. There is no clear long-term trend in Mn concentration in the streams although there are increases in Mn concentrations for years when there is extensive felling of spruce plantation forest and in 1995 following a more extensive dry period. New high resolution monitoring picks up the effects of the rising limb of the hydrograph when concentrations rapidly increase, diurnal patterns during summer low-flow periods and contrasting dynamics between moorland and forested catchments.  相似文献   
83.
84.
A challenge for statewide stream monitoring is visualizing the spatial and statistical characteristics of such data to compare the biotic condition of watersheds and relate that condition to watershed‐level estimates of instream variables. We used linked micromaps on stream survey data of 25 subbasins (766‐5,982 km2) for biotic condition, nine water quality, and two habitat variables. Subbasin biotic condition was negatively correlated with conductivity, magnesium and sulfate concentrations, and weakly positively correlated with habitat scores of sedimentation and embeddedness, with higher scores indicating better habitat. Positive spatial autocorrelation was detected among the subbasins in both habitat variables, iron concentration, pH, and exceedances of fecal coliform criteria as shown in linked micromaps. A spatial principal components analysis reduced the 11 environmental variables to two principal axes. The first axis synthesized a gradient of water quality and habitat scores among the subbasins. Subbasin biotic condition regressed on first axis subbasin scores had a significant, negative slope and accounted for 55% of the variation. Subbasins in degraded biotic condition had elevated conductivities and ion concentrations in northern and southern subbasins, and low habitat scores in western subbasins. Through linked micromaps, we compared the biotic condition among subbasins and identified stressors prevalent among subbasins that affected biotic condition.  相似文献   
85.
Imidacloprid is a systemic insecticide effective in controlling the exotic pest (hemlock woolly adelgid) in eastern hemlock () trees. Concerns over imidacloprid impacts on nontarget species have limited its application in southern Appalachian ecosystems. We quantified the movement and adsorption of imidacloprid in forest soils after soil injection in two sites at Coweeta Hydrologic Laboratory in western North Carolina. Soils differed in profile depth, total carbon and nitrogen content, and effective cation exchange capacity. We injected imidacloprid 5 cm into mineral soil, 1.5 m from infested trees, using a Kioritz soil injector. We tracked the horizontal and vertical movement of imidacloprid by collecting soil solution and soil samples at 1 m, 2 m, and at the drip line from each tree periodically for 1 yr. Soil solution was collected 20 cm below the surface and just above the saprolite, and acetonitrile-extractable imidacloprid was determined through the profile. Soil solution and extractable imidacloprid concentrations were determined by high-performance liquid chromatography. Soil solution and extractable imidacloprid concentrations were greater in the site with greater soil organic matter. Imidacloprid moved vertically and horizontally in both sites; concentrations generally declined downward in the soil profile, but preferential flow paths allowed rapid vertical movement. Horizontal movement was limited, and imidacloprid did not move to the tree drip line. We found a negative relationship between adsorbed imidacloprid concentrations and soil microarthropod populations largely in the low-organic-matter site; however, population counts were similar to other studies at Coweeta.  相似文献   
86.
SoilTrEC: a global initiative on critical zone research and integration   总被引:1,自引:0,他引:1  
Soil is a complex natural resource that is considered non-renewable in policy frameworks, and it plays a key role in maintaining a variety of ecosystem services (ES) and life-sustaining material cycles within the Earth's Critical Zone (CZ). However, currently, the ability of soil to deliver these services is being drastically reduced in many locations, and global loss of soil ecosystem services is estimated to increase each year as a result of many different threats, such as erosion and soil carbon loss. The European Union Thematic Strategy for Soil Protection alerts policy makers of the need to protect soil and proposes measures to mitigate soil degradation. In this context, the European Commission-funded research project on Soil Transformations in European Catchments (SoilTrEC) aims to quantify the processes that deliver soil ecosystem services in the Earth's Critical Zone and to quantify the impacts of environmental change on key soil functions. This is achieved by integrating the research results into decision-support tools and applying methods of economic valuation to soil ecosystem services. In this paper, we provide an overview of the SoilTrEC project, its organization, partnerships and implementation.  相似文献   
87.
88.
Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.  相似文献   
89.
Phosphorus (P) loss from agricultural land in surface runoff can contribute to eutrophication of surface water. This study was conducted to evaluate a range of environmental and agronomic soil P tests as indicators of potential soil surface runoff dissolved reactive P (DRP) losses from Ontario soils. The soil samples (0- to 20-cm depth) were collected from six soil series in Ontario, with 10 sites each to provide a wide range of soil test P (STP) values. Rainfall simulation studies were conducted following the USEPA National P Research Project protocol. The average DRP concentration (DRP30) in runoff water collected over 30 min after the start of runoff increased (p < 0.001) in either a linear or curvilinear manner with increases in levels of various STPs and estimates of degree of soil P saturation (DPS). Among the 16 measurements of STPs and DPSs assessed, DPS(M3) 2 (Mehlich-3 P/[Mehlich-3 Al + Fe]) (r2 = 0.90), DPS(M3)-3 (Mehlich-3 P/Mehlich-3 Al) (r2 = 0.89), and water-extractable P (WEP) (r2 = 0.89) had the strongest overall relationship with runoff DRP30 across all six soil series. The DPS(M3)-2 and DPS(M3)-3 were equally accurate in predicting runoff DRP30 loss. However, DPS(M3)-3 was preferred as its prediction of DRP30 was soil pH insensitive and simpler in analytical procedure, ifa DPS approach is adopted.  相似文献   
90.
Natrophosphate is a common trace mineral in alkaline rocks and a major salt in alkaline nuclear waste that complicates waste processing. Natrophosphate has historically been assigned the composition Na7F(PO4)2·19H2O, but this conflicts with a more recent solubility study that claimed natrophosphate is a solid solution of NaF and Na3PO4. It is not possible to model the solubility of natrophosphate in nuclear waste until this controversy is resolved. The present study mixed stock solutions of 0.9 M NaF and Na3PO4 at different ratios at 8 °C. The compositions of the liquid phase and wet natrophosphate sample were measured by ion chromatography. Plotting the tie-lines between the solid and liquid phase composition showed convergence on a single composition, indicating that natrophosphate is not a solid solution. The resulting composition is approximately the same as the composition first reported more than 140 years ago. Thus, this study resolves the long-standing controversy in the literature concerning the composition of natrophosphate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号