首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3145篇
  免费   86篇
  国内免费   31篇
安全科学   143篇
废物处理   122篇
环保管理   940篇
综合类   307篇
基础理论   718篇
环境理论   1篇
污染及防治   686篇
评价与监测   201篇
社会与环境   98篇
灾害及防治   46篇
  2023年   15篇
  2022年   21篇
  2021年   34篇
  2020年   21篇
  2019年   37篇
  2018年   54篇
  2017年   51篇
  2016年   69篇
  2015年   67篇
  2014年   68篇
  2013年   343篇
  2012年   126篇
  2011年   159篇
  2010年   128篇
  2009年   135篇
  2008年   173篇
  2007年   170篇
  2006年   149篇
  2005年   114篇
  2004年   90篇
  2003年   116篇
  2002年   98篇
  2001年   63篇
  2000年   55篇
  1999年   32篇
  1998年   49篇
  1997年   33篇
  1996年   42篇
  1995年   54篇
  1994年   43篇
  1993年   53篇
  1992年   43篇
  1991年   23篇
  1990年   30篇
  1989年   21篇
  1988年   30篇
  1987年   19篇
  1986年   22篇
  1985年   30篇
  1984年   26篇
  1983年   33篇
  1982年   42篇
  1981年   42篇
  1980年   41篇
  1979年   29篇
  1978年   28篇
  1977年   14篇
  1976年   11篇
  1973年   7篇
  1972年   9篇
排序方式: 共有3262条查询结果,搜索用时 31 毫秒
231.
Abstract: Sediment oxygen demand (SOD) is believed to be an important process affecting dissolved oxygen (DO) concentrations in blackwater streams of the southeastern coastal plain. Because very few data on SOD are available, it is common for modelers to take SOD values from the literature for use with DO models. In this study, SOD was measured in seven blackwater streams of the Suwannee River Basin within the Georgia coastal plain for between August 2004 and April 2005. SOD was measured using four in situ chambers and was found to vary on average between 0.1 and 2.3 g O2/m/day across the seven study sites throughout the study period. SOD was found to vary significantly between the watersheds within the Suwannee River Basin. However, land use was not found to be the driving force behind SOD values. Statistical analyses did find significant interaction between land use and watersheds suggesting that an intrinsically different factor in each of the watersheds may be affecting SOD and the low DO concentrations. Further research is needed to identify the factors driving SOD dynamics in the blackwater streams of Georgia’s coastal plain. Results from this study will be used by the Georgia Department of Natural Resources – Environmental Protection Division as model input data for the development and evaluation of DO total maximum daily loads in the Georgia coastal plain.  相似文献   
232.
Abstract: Phosphorus and sediment are major nonpoint source pollutants that degrade water quality. Streambank erosion can contribute a significant percentage of the phosphorus and sediment load in streams. Riparian land‐uses can heavily influence streambank erosion. The objective of this study was to compare streambank erosion along reaches of row‐cropped fields, continuous, rotational and intensive rotational grazed pastures, pastures where cattle were fenced out of the stream, grass filters and riparian forest buffers, in three physiographic regions of Iowa. Streambank erosion was measured by surveying the extent of severely eroding banks within each riparian land‐use reach and randomly establishing pin plots on subsets of those eroding banks. Based on these measurements, streambank erosion rate, erosion activity, maximum pin plot erosion rate, percentage of streambank length with severely eroding banks, and soil and phosphorus losses per unit length of stream reach were compared among the riparian land‐uses. Riparian forest buffers had the lowest streambank erosion rate (15‐46 mm/year) and contributed the least soil (5‐18 tonne/km/year) and phosphorus (2‐6 kg/km/year) to stream channels. Riparian forest buffers were followed by grass filters (erosion rates 41‐106 mm/year, soil losses 22‐47 tonne/km/year, phosphorus losses 9‐14 kg/km/year) and pastures where cattle were fenced out of the stream (erosion rates 22‐58 mm/year, soil losses 6‐61 tonne/km/year, phosphorus losses 3‐34 kg/km/year). The streambank erosion rates for the continuous, rotational, and intensive rotational pastures were 101‐171, 104‐122, and 94‐170 mm/year, respectively. The soil losses for the continuous, rotational, and intensive rotational pastures were 197‐264, 94‐266, and 124‐153 tonne/km/year, respectively, while the phosphorus losses were 71‐123, 37‐122, and 66 kg/km/year, respectively. The only significant differences for these pasture practices were found among the percentage of severely eroding bank lengths with intensive rotational grazed pastures having the least compared to the continuous and rotational grazed pastures. Row‐cropped fields had the highest streambank erosion rates (239 mm/year) and soil losses (304 tonne/km/year) and very high phosphorus losses (108 kg/km/year).  相似文献   
233.
Walker LA  Shore RF  Turk A  Pereira MG  Best J 《Ambio》2008,37(6):466-471
The Predatory Bird Monitoring Scheme (PBMS) is a long term (>40 y), UK-wide, exposure monitoring scheme that determines the concentration of selected pesticides and pollutants in the livers and eggs of predatory birds. This paper describes how the PBMS works, and in particular highlights some of the key scientific and policy drivers for monitoring contaminants in predatory birds and describes the specific aims, scope, and methods of the PBMS. We also present previously unpublished data that illustrates how the PBMS has been used to demonstrate the success of mitigation measures in reversing chemical-mediated impacts; identify and evaluate chemical threats to species of high conservation value; and finally to inform and refine monitoring methodologies. In addition, we discuss how such schemes can also address wider conservation needs.  相似文献   
234.
Projected climate change might increase the deposition of nitrogen by about 10% to seminatural ecosystems in southern Norway. At Storgama, increased precipitation in the growing season increased the fluxes of total organic carbon (TOC) and total organic nitrogen (TON) in proportion to the water flux. In winter, soil temperatures near 0 degrees C, common under a snowpack, induced higher runoff of inorganic nitrogen (N) and lower runoff of TOC. By contrast, soil temperatures below freezing, caused by little snow accumulation (expected in a warmer world), reduced runoff of inorganic N, TON, and TOC. Long-term monitoring data showed that reduced snowpack can cause either decreased or increased N leaching, depending on interactions with N deposition, soil temperature regime, and winter discharge. Seasonal variation in TOC was mainly climatically controlled, whereas deposition of sulfate and nitrate (NO3) explained the long-term TOC increase. Upscaling to the river basin scale showed that the annual flux of NO3 will remain unchanged in response to climate change projections.  相似文献   
235.
In 137 females (F) and 94 males (M) aged 21-35 years from organochlorines (OCs) polluted area (POLL) increased thyroid volume (ThV), prevalence of antibodies to thyroperoxidase (TPOab), thyrotropin receptor (TRab) and of impaired fasting glucose (IFG) was found compared to 116 F and 107 M from background pollution area (BCGR). In F and M from POLL also strikingly increased level of PCBs, DDE and HCB was found. Such findings were compared to the generation of their parents aged 41-55 years consisting of 320F/213M from POLL and 406F/231M from BCGR. However, in spite of strikingly lower level of those OCs in young adults from POLL, they showed about the same prevalence of adverse health signs as the old generation. From such reason 44 young F and 40 young M with lowest PCBs level from POLL were selected to obtain nearly the same PCB level as found in all young F and M from BCGR. In such PCB adjusted groups the prevalence of TPOab, TRab, IFG and increased ThV was still significantly higher than that in all young subjects from BCGR. At the same time, also the level of DDE and HCB in such PCBs adjusted groups was considerably lower. It was concluded that such adverse effects in young adults from POLL possibly did not result from their actual OCs levels, but very likely from their exposure to high OCs levels of their mothers during their prenatal and perinatal life. Thus, the data may be compatible with present views on transgenerational transmission of endocrine disruptors action.  相似文献   
236.
A novel approach to predict aquatic toxicity from molecular structure   总被引:1,自引:0,他引:1  
The main aim of the study was to develop quantitative structure-activity relationship (QSAR) models for the prediction of aquatic toxicity using atom-based non-stochastic and stochastic linear indices. The used dataset consist of 392 benzene derivatives, separated into training and test sets, for which toxicity data to the ciliate Tetrahymena pyriformis were available. Using multiple linear regression, two statistically significant QSAR models were obtained with non-stochastic (R2=0.791 and s=0.344) and stochastic (R2=0.799 and s=0.343) linear indices. A leave-one-out (LOO) cross-validation procedure was carried out achieving values of q2=0.781 (scv=0.348) and q2=0.786 (scv=0.350), respectively. In addition, a validation through an external test set was performed, which yields significant values of Rpred2 of 0.762 and 0.797. A brief study of the influence of the statistical outliers in QSAR's model development was also carried out. Finally, our method was compared with other approaches implemented in the Dragon software achieving better results. The non-stochastic and stochastic linear indices appear to provide an interesting alternative to costly and time-consuming experiments for determining toxicity.  相似文献   
237.
Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NOx. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO(3)(-) produced a trend of high delta(18)O-low delta(15)N to low delta(18)O-high delta(15)N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX.  相似文献   
238.
239.
240.
Geochemical association plots are used as a screening tool for environmental site assessments and use empirical log–log relationships between total trace metal concentrations and concentrations of a major (i.e., reference) soil metal constituent, such as iron (Fe), to discern sites with naturally elevated trace metal levels from sites with anthropogenic contamination. Log–log relationships have been consistently observed between trace metal and reference metal concentrations and are often considered constant. Consequently, we used a regional geochemistry data set to evaluate background trace metal/Fe log–log associations across soils with highly diverse composition. Our results indicate that, although geochemical associations may be proportional, they significantly differ across predominant United States Department of Agriculture (USDA) soil orders. This suggests that highly complex interactions between soil-forming factors and variable secondary clay mineral composition affect the ratio of trace metals to Fe concentrations in soils. Also, intra-order variability in trace metal/Fe ratios generally ranged multiple orders of magnitude which suggest that the order level of the USDA soil taxonomic system is insufficient to reasonably classify background trace metal concentrations. Consequently, geochemical association plots are a useful screening tool for environmental site assessments, but ubiquitous application of generic background metal data sets could result in erroneous conclusions. Because significantly different ratios were observed across predominant USDA soil orders, an agglomerative clustering technique was used to elucidate hierarchical patterns of association. We present these results as a mechanism to aid environmental assessors in screening candidate background metal data sets for their applicability to site-specific soil composition; although site-specific background metal data should be utilized if ample pristine reference sites with similar (i.e., sub-order) soil composition can be identified and sampled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号