首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6737篇
  免费   59篇
  国内免费   36篇
安全科学   100篇
废物处理   432篇
环保管理   471篇
综合类   932篇
基础理论   1446篇
环境理论   10篇
污染及防治   2367篇
评价与监测   630篇
社会与环境   426篇
灾害及防治   18篇
  2023年   78篇
  2022年   195篇
  2021年   249篇
  2020年   101篇
  2019年   91篇
  2018年   235篇
  2017年   222篇
  2016年   345篇
  2015年   192篇
  2014年   373篇
  2013年   630篇
  2012年   424篇
  2011年   443篇
  2010年   334篇
  2009年   267篇
  2008年   386篇
  2007年   411篇
  2006年   336篇
  2005年   244篇
  2004年   190篇
  2003年   167篇
  2002年   159篇
  2001年   94篇
  2000年   73篇
  1999年   53篇
  1998年   27篇
  1997年   23篇
  1996年   18篇
  1995年   41篇
  1994年   27篇
  1993年   16篇
  1992年   11篇
  1991年   12篇
  1990年   14篇
  1989年   9篇
  1987年   9篇
  1985年   8篇
  1967年   9篇
  1966年   13篇
  1965年   16篇
  1964年   31篇
  1963年   12篇
  1962年   17篇
  1961年   12篇
  1960年   9篇
  1959年   27篇
  1958年   37篇
  1957年   20篇
  1956年   14篇
  1955年   19篇
排序方式: 共有6832条查询结果,搜索用时 359 毫秒
771.
Accelerating rate of species loss has prompted researchers to study the role of species diversity in processes that control ecosystem functioning. Although negative impact of species loss has been documented, the evidence concerning its impact on ecosystem stability is still limited. Here, we studied the effects of declining species and functional diversity on plant community responses to drought in the field (open to weed colonization) and greenhouse conditions. Both species and functional diversity positively affected the average yields of field communities. However, this pattern was similar in both drought-stressed and control plots. No effect of diversity on community resistance, biomass recovery after drought and resilience was found because drought reduced biomass production similarly at each level of diversity by approximately 30?%. The use of dissimilarity (characterized by Euclidean distance) revealed higher variation under changing environments (drought-stressed vs. control) in more diverse communities compared to less species-rich assemblages. In the greenhouse experiment, the effect of species diversity affected community resistance, indicating that more diverse communities suffered more from drought than species-poor ones. We conclude that our study did not support the insurance hypothesis (stability properties of a community should increase with species richness) because species diversity had an equivocal effect on ecosystem resistance and resilience in an environment held under non-weeded practice, regardless of the positive relationship between sown species diversity and community biomass production. More species-rich communities were less resistant against drought-stressed conditions than species-poor ones grown in greenhouse conditions.  相似文献   
772.
The implementation of urban sustainability practices is affected by political obstacles, and diverse political ideologies may defend different city models. Sustainable policy design could also be affected by several factors that cause the deflection of resources initially allocated to other groups that are contrary to the concerns pursued and have the power to veto sustainable plans by exerting pressure on the party in power.In this sense, the aim of this paper is to show the impact that political factors have on cities’ sustainability, and the effect of both on cities’ economic development. To do so, we used the 78 Spanish cities with a population over 100,000 studied by MERCO (Spanish Corporate Reputation Monitor) as regards their levels of sustainability for the fiscal years 2008 and 2009. Both relationships have been tested empirically through two dependence models using linear regression techniques.The results obtained show that political competition improves cities’ sustainability, while a leftist ideology has an inverse impact. On the other hand, a significant direct relationship has been observed between urban sustainability and municipal economic activity.  相似文献   
773.

Social interactions may shape brain development. In primitively eusocial insects, the mushroom body (MB), an area of the brain associated with sensory integration and learning, is larger in queens than in workers. This may reflect a strategy of neural investment in queens or it may be a plastic response to social interactions in the nest. Here, we show that nest foundresses—the reproductive females who will become queens but are solitary until their first workers are born—have larger MBs than workers in the primitively eusocial sweat bee Augochlorella aurata. Whole brain size and optic lobe size do not differ between the two groups, but foundresses also have larger antennal lobes than workers. This shows that increased neural investment in MBs precedes social group formation. Larger MBs among foundresses may reflect the increased larval nutrition provisioned to future queens and the lack of social aggression from a dominant queen upon adult emergence.

  相似文献   
774.

Climate change is a global phenomenon that affects biophysical systems and human well-being. The Paris Agreement of the United Nations Framework Convention on Climate Change entered into force in 2016 with the objective of strengthening the global response to climate change by keeping global temperature rise this century well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 °C. The agreement requires all Parties to submit their “nationally determined contributions” (NDCs) and to strengthen these efforts in the years ahead. Reducing carbon emissions from deforestation and forest degradation is an important strategy for mitigating climate change, particularly in developing countries with large forests. Extensive tropical forest loss and degradation have increased awareness at the international level of the need to undertake large-scale ecological restoration, highlighting the need to identify cases in which restoration strategies can contribute to mitigation and adaptation. Here we consider Brazil as a case study to evaluate the benefits and challenges of implementing large-scale restoration programs in developing countries. The Brazilian NDC included the target of restoring and reforesting 12 million hectares of forests for multiple uses by 2030. Restoration of native vegetation is one of the foundations of sustainable rural development in Brazil and should consider multiple purposes, from biodiversity and ecosystem services conservation to social and economic development. However, ecological restoration still presents substantial challenges for tropical and mega-diverse countries, including the need to develop plans that are technically and financially feasible, as well as public policies and monitoring instruments that can assess effectiveness. The planning, execution, and monitoring of restoration efforts strongly depend on the context and the diagnosis of the area with respect to reference ecosystems (e.g., forests, savannas, grasslands, wetlands). In addition, poor integration of climate change policies at the national and subnational levels and with other sectorial policies constrains the large-scale implementation of restoration programs. The case of Brazil shows that slowing deforestation is possible; however, this analysis highlights the need for increased national commitment and international support for actions that require large-scale transformations of the forest sector regarding ecosystem restoration efforts. Scaling up the ambitions and actions of the Paris Agreement implies the need for a global framework that recognizes landscape restoration as a cost-effective nature-based solution and that supports countries in addressing their remaining needs, challenges, and barriers.

  相似文献   
775.
Mitigation and Adaptation Strategies for Global Change - Bioenergy with carbon dioxide (CO2) capture and storage (BECCS) technologies represent an interesting option to reach negative carbon...  相似文献   
776.

Tropical peat swamp forests (PSF) are characterized by high quantities of carbon (C) stored as organic soil deposits due to waterlogged conditions which slows down decomposition. Globally, Peru has one of the largest expanse of tropical peatlands, located primarily within the Pastaza-Marañón river basin in the Northwestern Peru. Peatland forests in Peru are dominated by a palm species—Mauritia flexuosa, and M. flexuosa-dominated forests cover ~?80% of total peatland area and store ~?2.3 Pg C. However, hydrologic alterations, land cover change, and anthropogenic disturbances could lead to PSF’s degradation and loss of valuable ecosystem services. Therefore, evaluation of degradation impacts on PSF’s structure, biomass, and overall C stocks could provide an estimate of potential C losses into the atmosphere as greenhouse gases (GHG) emissions. This study was carried out in three regions within Pastaza-Marañón river basin to quantify PSF’s floristic composition and degradation status and total ecosystem C stocks. There was a tremendous range in C stocks (Mg C ha?1) in various ecosystem pools—vegetation (45.6–122.5), down woody debris (2.1–23.1), litter (2.3–7.8), and soil (top 1 m; 109–594). Mean ecosystem C stocks accounting for the top 1 m soil were 400, 570, and 330 Mg C ha?1 in Itaya, Tigre, and Samiria river basins, respectively. Considering the entire soil depth, mean ecosystem C stocks were 670, 1160, and 330 Mg C ha?1 in Itaya, Tigre, and Samiria river basins, respectively. Floristic composition and calcium to Magnesium (Ca/Mg) ratio of soil profile offered evidence of a site undergoing vegetational succession and transitioning from minerotrophic to ombrotrophic system. Degradation ranged from low to high levels of disturbance with no significant difference between regions. Increased degradation tended to decrease vegetation and forest floor C stocks and was significantly correlated to reduced M. flexuosa biomass C stocks. Long-term studies are needed to understand the linkages between M. flexuosa harvest and palm swamp forest C stocks; however, river dynamics are important natural drivers influencing forest succession and transition in this landscape.

  相似文献   
777.
778.
779.
The objective of this work was to compare the performance of two laboratory-scale, mesophilic systems aiming at the anaerobic digestion of the organic fraction of municipal solid wastes (OFMSW). The first system consisted of two coupled reactors packed with OFMSW (PBR1.1-PBR1.2) and the second system consisted of an upflow anaerobic sludge bed reactor (UASB) coupled to a packed reactor (UASB2.1-PBR2.2). For the start-up phase, both reactors PBR 1.1 and the UASB 2.1 (also called leading reactors) were inoculated with a mixture of non-anaerobic inocula and worked with leachate and effluent full recirculation, respectively. Once a full methanogenic regime was achieved in the leading reactors, their effluents were fed to the fresh-packed reactors PBR1.2 and PBR2.2, respectively. The leading PBR 1.1 reached its full methanogenic regime after 118 days (Tm, time to achieve methanogenesis) whereas the other leading UASB 2.1 reactor reached its full methanogenesis regime after only 34 days. After coupling the leading reactors to the corresponding packed reactors, it was found that both coupled anaerobic systems showed similar performances regarding the degradation of the OFMSW. Removal efficiencies of volatile solids and cellulose and the methane pseudo-yield were 85.95%, 80.88% and 0.109 NL CH4 g(-1) VS(fed) in the PBR-PBR system; and 88.75%, 82.61% and 0.115 NL CH4 g(-1) VS(fed0 in the UASB-PBR system [NL, normalized litre (273 degrees K, 1 ata basis)]. Yet, the second system UASB-PBR system showed a faster overall start-up.  相似文献   
780.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号