首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32805篇
  免费   365篇
  国内免费   465篇
安全科学   998篇
废物处理   1596篇
环保管理   3863篇
综合类   5345篇
基础理论   8450篇
环境理论   23篇
污染及防治   8937篇
评价与监测   2303篇
社会与环境   1934篇
灾害及防治   186篇
  2023年   174篇
  2022年   398篇
  2021年   429篇
  2020年   280篇
  2019年   327篇
  2018年   573篇
  2017年   588篇
  2016年   885篇
  2015年   647篇
  2014年   1035篇
  2013年   2658篇
  2012年   1238篇
  2011年   1611篇
  2010年   1312篇
  2009年   1283篇
  2008年   1563篇
  2007年   1633篇
  2006年   1371篇
  2005年   1178篇
  2004年   1044篇
  2003年   1127篇
  2002年   995篇
  2001年   1259篇
  2000年   879篇
  1999年   529篇
  1998年   354篇
  1997年   363篇
  1996年   362篇
  1995年   431篇
  1994年   453篇
  1993年   355篇
  1992年   376篇
  1991年   354篇
  1990年   389篇
  1989年   341篇
  1988年   296篇
  1987年   278篇
  1986年   224篇
  1985年   250篇
  1984年   265篇
  1983年   256篇
  1982年   242篇
  1981年   222篇
  1980年   176篇
  1979年   194篇
  1978年   178篇
  1975年   140篇
  1974年   117篇
  1972年   130篇
  1971年   132篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
231.
232.
233.
MAP沉淀法目标产物最优形成条件及分析方法   总被引:14,自引:1,他引:13  
为了确定鸟粪石(MAP:MgNH4PO4·6H2O)形成的最优条件,引入化学剖析法,利用酸溶液将鸟粪石沉淀法中所得沉淀物溶解后进行相应的元素分析;提出一种根据沉淀物中的NH+4-N含量间接计算确定鸟粪石含量(即纯度)的分析方法.根据这种计算分析方法,分别得出了不同pH条件下以自来水(主要为地下水)和超纯水作为溶剂所合成的鸟粪石纯度,并对pH和Ca2+在鸟粪石形成过程中的影响进行了评估.结果表明,该计算分析方法能够有效实现对MAP沉淀法目标产物的定量分析,弥补了国内外目前普遍依靠XRD技术定性判断所得沉淀物中鸟粪石是否存在的缺陷.以超纯水作为溶剂时,使鸟粪石纯度>90%的最佳pH范围在7.5~9.0,而以自来水为溶剂时,获得相同鸟粪石纯度最佳pH范围则是7.0~7.5.实际污水中常常含有相当数量的Ca2+,实施碱性条件(pH>8.0)的MAP沉淀势必大幅降低鸟粪石的纯度.因此,对实际污水回收磷而言,MAP沉淀法的最优pH条件应控制在中性范围(<8.0)以内.  相似文献   
234.
Background, aim, and scope Compared to other micropollutants such as pesticides or pharmaceuticals, less attention has been paid to biocides so far. A prioritisation of the biocides currently used in Switzerland in terms of pollution of waters revealed that quaternary ammonium compounds (QAC), the isothiazolinones chloromethylisothiazolinone and benzisothiazolinone as well as Irgarol exhibit the highest risk potential. The QAC benzalkoniumchloride (BAC) and didecyldimethylammoniumchloride (DDAC-C10) are used in considerable amounts and have a high biological activity. Materials and methods The emissions of selected QAC in waters and soil and the predicted environmental concentrations (PECs) were estimated by means of a substance flow analysis (SFA). The study was based on data from the Swiss products register, on literature, contacts to producers and users as well as on own assumptions. Results and discussion The consumption of BAC (four homologues) and DDAC-C10 in biocidal applications in Switzerland amounts to 90 and 30 tons annually. The most important applications are disinfectants for public health areas, food and feed areas as well as wood preservatives. The total emissions to the environment of all five substances account for approximately 11?t/a. The PECs in surface waters and sediments vary from values slightly lower than the predicted no-effect concentration (PNEC) to roughly three orders of magnitude below the PNEC. However, concentrations above the PNEC are possible at certain locations, particularly downstream of wastewater treatment plants (WWTP) effluents and sewer overflows. Effects on aquatic organisms can therefore not be excluded. Three BAC homologues could not be assessed, as there were no PNEC values available. Conclusions The contribution of emissions from WWTP (punctual emissions) to the environment is only about one tenth and relatively low compared to diffuse emissions. This means that measures for the emission reduction focussing only on end-of-pipe solutions in WWTP will not reduce the emissions significantly. Moreover, for the evaluation of measures, attention has to be paid to the fact that biocides such as the selected QAC are often also applied in non-biocidal applications (e.?g. three times higher volumes in the case of BAC). Recommendations and perspectives SFA serves as a useful tool for early recognition of environmental problems caused by chemicals. This allows recommending appropriate risk reduction measures in the production, the use and the end-of-life phase. It is advisable to use the SFA already in the development stage of chemicals and later on as a quality control tool. The relevant sources of chemicals and sinks in the environment can thus be determined in complex systems, even in absence of extensive measurements or product registers with consumption figures by means of estimations and scenarios.  相似文献   
235.
We report data from a yearlong (2006–2007) study of black carbon concentrations ([BC]) measured at 5-min intervals with an Aethalometer in Karachi, Pakistan. Daily mean [BC] varied from about 1 to 15 μg m?3. However, short-term spikes exceeding 40 μg m?3 were common, occurring primarily during the morning and evening rush-hour periods. The [BC] values were highest during November through February, ~10 μg m?3, and lowest during June through September, ~2 μg m?3. Diurnal, seasonal, and day-of-the-week trends are discussed. It is demonstrated that these trends are strongly affected by meteorological patterns. A simple expression is applied to the concentration profiles to separate the effects of meteorological conditions and elucidate the underlying emissions patterns. Daily emissions varied from 14,000 to 22,000 kg of BC per day. When integrated over the year emissions for Karachi Proper were estimated at 6.7 kilometric tons per year and emissions for greater Karachi were 17.5 kilometric tons per year. Folding in the populations of each area yields BC emissions of 0.74 and 1.1 kg per person per year, respectively. Applying the model to previously collected data at Lahore, Pakistan yields emissions during November–January that are around a factor of two higher than those in Karachi, but because the BC measurements in Lahore covered only three months, no estimates of annual emissions were attempted. Given the large populations of these cities the local health impact from PM alone is expected to be severe but because of the high [BC] emissions the impact on the global climate may be equally significant.  相似文献   
236.
Size-segregated aerosol samples (PM2.5 and PM10) were collected during Jan–Dec-2007 from a high-altitude site located in a semi-arid region (Mt. Abu, 24.6 °N, 72.7 °E, 1680 m asl) in order to asses the temporal variability in the abundance of atmospheric mineral dust and its elemental composition over western India. The mass concentrations of fine (PM2.5) and coarse (PM10–2.5) mode aerosols varied from 1.6 to 46.1 and 2.3 to 102 μg m?3 respectively over the annual seasonal cycle; with dominant and uniform contribution of mineral dust (60–80%) in the coarse mode relative to large temporal variability (11–75%) observed in the fine mode. The coarse mass fraction shows a characteristic increase with the wind speed during summer months (Mar to Jun); whereas fine aerosol mass and its elemental composition exhibit conspicuous temporal pattern associated with north-easterlies during wintertime (Oct–Feb). The Fe/Al weight ratio in PM2.5 ranges from 0.5 to 1.0 during winter months. The relative enrichment of Fe in fine mode, compared to the crustal ratio of 0.44, is attributed to the down-wind advective transport of combustion products derived from large-scale biomass burning, industrial and automobile emission sources located in the Indo-Gangetic Plain (northern India). In contrast, Ca/Al and Mg/Al weight ratios show relative enrichment of Ca and Mg in the coarse mode; indicating their dominant contribution from carbonate minerals. This has implication to efficient neutralization of atmospheric acidic species (SO42? and NO3?) by mineral dust over western India.  相似文献   
237.
238.
Since particulate matter has a direct and adverse impact on public health, a good air quality forecast is important. Several European countries presently use statistical forecasting models, which have their limitations, especially for PM10. An alternative approach is to use a chemistry transport model. Here, the ability of the chemical transport model LOTOS-EUROS to forecast PM10 concentrations in the Netherlands was investigated. LOTOS-EUROS models several PM10 components individually. For sulphate, nitrate and ammonium aerosol the evaluation against observations shows that the modelled annual mean concentrations are within 20% of the measured concentration and that the temporal correlation is reasonably good (R > 0.6). For sea salt the model tended to overestimate the measured concentrations. For elemental carbon the correspondence with black smoke observations was reasonable. However, total PM10 is seriously underestimated, due to unmodelled components (secondary organic aerosols, mineral dust) and missing sources. Therefore, a simple bias correction for four seasons was derived based on the years 2004–2006. The model was compared with the Dutch operational statistical model PROPART and ground-level observations. With bias correction, LOTOS-EUROS performed better than PROPART regarding the timing of events. The major flaw of LOTOS-EUROS was that high values (>50 μg m?3) were still underestimated. Another advantage of LOTOS-EUROS over the statistical model was the more detailed information in space and time, which facilitates communication of the forecast to the general public.  相似文献   
239.
To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.  相似文献   
240.
One-year quantitative chemical data set consisting of water-soluble constituents (NH4+, Na+, K+, Mg2+, Ca2+, Cl?, NO3?, SO42? and HCO3?), crustal and trace elements (Al, Fe, Ca, Mg, K, Mn, Zn, Pb) and carbonaceous species (OC, EC) in ambient aerosols, collected over an urban site located in a high-dust semi-arid region of western India, reveals excellent linear relationship (r2 = 0.92; slope = 0.96 ± 0.05) between gravimetrically assessed TSP (total suspended particulates) and chemically analyzed aerosol mass. The TSP abundance ranging from 60 to 250 μg m?3, over a period of 12 months (January–December), is dominated by mineral dust (~70%); whereas contribution from sea-salts, anthropogenic and carbonaceous species exhibits significant temporal variability depending upon the wind regimes. The mineral dust is enriched in Ca, Mg and Fe with respect to upper continental crust (UCC); whereas Zn and Pb exhibit a characteristic anthropogenic source and high enrichment factors. The carbonaceous species show significant seasonality; with dominance of OC (range: 4.6–28 μg m?3; average: 12.8 μg m?3; SD: 6.8) and minor contribution from EC (range: 0.3–4.4 μg m?3; average: 2.4 μg m?3; SD: 1.4). The observed concentrations are significantly lower than those reported for the metro cities in South Asia but the OC/EC ratios (range: 4.3–35; average: 8.3; SD: 5.7) are significantly higher than the characteristic ratio (~2–4) reported for the urban atmosphere. Such quantitative chemical characterization of aerosols is essential in assessing their role in atmospheric chemistry and climate change. This study could also be useful in understanding the physical and optical aerosol properties documented from the same site and thus, in validating regional climate models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号