首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
环保管理   3篇
综合类   3篇
基础理论   33篇
污染及防治   5篇
评价与监测   1篇
  2023年   20篇
  2022年   10篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2001年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
排序方式: 共有45条查询结果,搜索用时 31 毫秒
11.
12.
Wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) was measured at Nahant, Massachusetts, a peninsula jutting into Massachusetts Bay and Wolf Neck, a peninsula jutting into Casco Bay, Maine. Wet deposition (rain and snow) was collected in a funnel which drains into a shielded, temperature controlled receiving bottle. Dry deposition of gaseous and particulate PAHs was collected onto an exposed water surface. PAHs were analyzed by solid phase extraction and gas chromatography-mass spectrometry. Sixteen PAH species were analyzed, ranging from acenaphthylene to coronene. The mean wet deposition rate of the sum of the 16 species is 720 ng m−2 cm−1 precipitation at Nahant, and 831 ng m−2 cm−1 precipitation at Wolf Neck. Wet deposition is attributed to regional PAH emitting sources. Storm patterns appear to bring somewhat higher wet deposition of PAHs to Wolf Neck than to Nahant. The mean dry deposition rate is 95 ng m−2 h−1 at Nahant and 9.3 ng m−2 h−1 at Wolf Neck. The large difference is attributed to the fact that Nahant is close to the urban-industrial metropolitan Boston area and Logan International Airport, whereas Wolf Neck has no major PAH-emitting sources nearby. Individual measurements have an error bracket of ±30%. The Chemical Mass Balance model was used to apportion the dry deposition to source categories. At Nahant, nine samples gave valid statistical attributes with a mean apportionment: jet exhaust 35%, gasoline fueled vehicles 32%, diesel fueled vehicles 17%, wood combustion 13%, others 3%. At Wolf Neck, six samples yielded a mean apportionment: jet exhaust 30%, gasoline vehicles 28%, diesel vehicles 18%, wood combustion 16%, others 8%. There is a considerable variation between the samples. The apportionment is greatly dependent on the quality and selection of the model inputs, i.e. source signatures, which for PAHs are questionable.  相似文献   
13.
14.
Environmental Chemistry Letters - The Ukraine conflict has put critical pressure on gas supplies and increased the price of fertilisers. As a consequence, biogas has gained remarkable attention as...  相似文献   
15.

Energy derived from fossil fuels contributes significantly to global climate change, accounting for more than 75% of global greenhouse gas emissions and approximately 90% of all carbon dioxide emissions. Alternative energy from renewable sources must be utilized to decarbonize the energy sector. However, the adverse effects of climate change, such as increasing temperatures, extreme winds, rising sea levels, and decreased precipitation, may impact renewable energies. Here we review renewable energies with a focus on costs, the impact of climate on renewable energies, the impact of renewable energies on the environment, economy, and on decarbonization in different countries. We focus on solar, wind, biomass, hydropower, and geothermal energy. We observe that the price of solar photovoltaic energy has declined from $0.417 in 2010 to $0.048/kilowatt-hour in 2021. Similarly, prices have declined by 68% for onshore wind, 60% for offshore wind, 68% for concentrated solar power, and 14% for biomass energy. Wind energy and hydropower production could decrease by as much as 40% in some regions due to climate change, whereas solar energy appears the least impacted energy source. Climate change can also modify biomass productivity, growth, chemical composition, and soil microbial communities. Hydroelectric power plants are the most damaging to the environment; and solar photovoltaics must be carefully installed to reduce their impact. Wind turbines and biomass power plants have a minimal environmental impact; therefore, they should be implemented extensively. Renewable energy sources could decarbonize 90% of the electricity industry by 2050, drastically reducing carbon emissions, and contributing to climate change mitigation. By establishing the zero carbon emission decarbonization concept, the future of renewable energy is promising, with the potential to replace fossil fuel-derived energy and limit global temperature rise to 1.5 °C by 2050.

  相似文献   
16.

The current energy crisis, depletion of fossil fuels, and global climate change have made it imperative to find alternative sources of energy that are both economically sustainable and environmentally friendly. Here we review various pathways for converting biomass into bioenergy and biochar and their applications in producing electricity, biodiesel, and biohydrogen. Biomass can be converted into biofuels using different methods, including biochemical and thermochemical conversion methods. Determining which approach is best relies on the type of biomass involved, the desired final product, and whether or not it is economically sustainable. Biochemical conversion methods are currently the most widely used for producing biofuels from biomass, accounting for approximately 80% of all biofuels produced worldwide. Ethanol and biodiesel are the most prevalent biofuels produced via biochemical conversion processes. Thermochemical conversion is less used than biochemical conversion, accounting for approximately 20% of biofuels produced worldwide. Bio-oil and syngas, commonly manufactured from wood chips, agricultural waste, and municipal solid waste, are the major biofuels produced by thermochemical conversion. Biofuels produced from biomass have the potential to displace up to 27% of the world's transportation fuel by 2050, which could result in a reduction in greenhouse gas emissions by up to 3.7 billion metric tons per year. Biochar from biomass can yield high biodiesel, ranging from 32.8% to 97.75%, and can also serve as an anode, cathode, and catalyst in microbial fuel cells with a maximum power density of 4346 mW/m2. Biochar also plays a role in catalytic methane decomposition and dry methane reforming, with hydrogen conversion rates ranging from 13.4% to 95.7%. Biochar can also increase hydrogen yield by up to 220.3%.

  相似文献   
17.
Environmental Chemistry Letters - Climate change is a major threat already causing system damage to urban and natural systems, and inducing global economic losses of over $500 billion. These issues...  相似文献   
18.
Environmental Chemistry Letters - Adopting waste-to-wealth strategies and circular economy models can help reduce biowaste and add value. For instance, poultry farming is an essential source of...  相似文献   
19.

Access to drinkable water is becoming more and more challenging due to worldwide pollution and the cost of water treatments. Water and wastewater treatment by adsorption on solid materials is usually cheap and effective in removing contaminants, yet classical adsorbents are not sustainable because they are derived from fossil fuels, and they can induce secondary pollution. Therefore, biological sorbents made of modern biomass are increasingly studied as promising alternatives. Indeed, such biosorbents utilize biological waste that would otherwise pollute water systems, and they promote the circular economy. Here we review biosorbents, magnetic sorbents, and other cost-effective sorbents with emphasis on preparation methods, adsorbents types, adsorption mechanisms, and regeneration of spent adsorbents. Biosorbents are prepared from a wide range of materials, including wood, bacteria, algae, herbaceous materials, agricultural waste, and animal waste. Commonly removed contaminants comprise dyes, heavy metals, radionuclides, pharmaceuticals, and personal care products. Preparation methods include coprecipitation, thermal decomposition, microwave irradiation, chemical reduction, micro-emulsion, and arc discharge. Adsorbents can be classified into activated carbon, biochar, lignocellulosic waste, clays, zeolites, peat, and humic soils. We detail adsorption isotherms and kinetics. Regeneration methods comprise thermal and chemical regeneration and supercritical fluid desorption. We also discuss exhausted adsorbent management and disposal. We found that agro-waste biosorbents can remove up to 68–100% of dyes, while wooden, herbaceous, bacterial, and marine-based biosorbents can remove up to 55–99% of heavy metals. Animal waste-based biosorbents can remove 1–99% of heavy metals. The average removal efficiency of modified biosorbents is around 90–95%, but some treatments, such as cross-linked beads, may negatively affect their efficiency.

  相似文献   
20.

The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants or produce chemicals without generating undesirable by-products. For example, catalysts derived from waste or inexpensive materials are promising for the circular economy. Here we review environmental photocatalysis, biocatalysis, and electrocatalysis, with focus on catalyst synthesis, structure, and applications. Common catalysts include biomass-derived materials, metal–organic frameworks, non-noble metals nanoparticles, nanocomposites and enzymes. Structure characterization is done by Brunauer–Emmett–Teller isotherm, thermogravimetry, X-ray diffraction and photoelectron spectroscopy. We found that water pollutants can be degraded with an efficiency ranging from 71.7 to 100%, notably by heterogeneous Fenton catalysis. Photocatalysis produced dihydrogen (H2) with generation rate higher than 100 μmol h−1. Dihydrogen yields ranged from 27 to 88% by methane cracking. Biodiesel production reached 48.6 to 99%.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号