首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
环保管理   3篇
综合类   3篇
基础理论   33篇
污染及防治   5篇
评价与监测   1篇
  2023年   20篇
  2022年   10篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2001年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
排序方式: 共有45条查询结果,搜索用时 109 毫秒
21.
One hundred and fourteen samples of amniotic fluid taken before 15 weeks of gestation were cultured for cytogenetic studies. The results of culturing these early amniotic fluid (EAF) samples were compared with the results of culturing 114 standard amniotic fluid (SAP) samples taken after 15 weeks of gestation matched for maternal age and received in the laboratory within the same week. Cell culture was successful in all 114 of the EAF samples and in 111 SAP samples. There was no significant difference in the days to harvesting and days to reporting in the two groups. Three samples of SAP failed to grow and two EAF samples produced tetraploid karyotypes, so that in these five cases amniocentesis had to be repeated. These problems were attributed to toxicity of a fungicide used in the culture medium. Pseudomosaicism was noted in two EAF samples and one SAP sample; and maternal cell contamination was noted in one EAF and one SAP sample. Thus, culturing and karyotyping cells harvested from EAF and SAP are similar, indicating that EAF samples from 12–14-week pregnancies could be used for prenatal diagnosis.  相似文献   
22.

Metal–organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal–organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal–organic frameworks present limitations such as toxicity of preparation reagents and components, which make frameworks unusable for food and pharmaceutical applications. Here, we review the structure, synthesis and properties of cyclodextrin-based metal–organic frameworks that could be used in bioapplications. Synthetic methods include vapor diffusion, microwave-assisted, hydro/solvothermal, and ultrasound techniques. The vapor diffusion method can produce cyclodextrin-based metal–organic framework crystals with particle sizes ranging from 200 nm to 400 μm. Applications comprise food packaging, drug delivery, sensors, adsorbents, gas separation, and membranes. Cyclodextrin-based metal–organic frameworks showed loading efficacy of the bioactive compounds ranging from 3.29 to 97.80%.

  相似文献   
23.
The EPA’s new nonpoint source pollution control requirements will soon institutionalize urban erosion and sediment pollution control practices nationwide. The public and private sector costs and social benefits associated with North Carolina’s program (one of the strongest programs in the country in terms of implementation authority, staffing levels, and comprehensiveness of coverage) are examined to provide general policy guidance on questions relating to the likely burden the new best management practices will have on the development industry, the likely costs and benefits of such a program, and the feasibility of running a program on a cost recovery basis. We found that urban erosion and sediment control requirements were not particularly burdensome to the development industry (adding about 4% on average to development costs). Public-sector program costs ranged between $2.4 and $4.8 million in fiscal year 1989. Our contingent valuation survey suggests that urban households in North Carolina are willing to pay somewhere between $7.1 and $14.2 million a year to maintain current levels of sediment pollution control. Our benefit-cost analysis suggests that the overall ratio is likely to be positive, although a definitive figure is elusive. Lastly, we found that several North Carolina localities have cost recovery fee systems that are at least partially self-financing. This article is based on research by the authors for the North Carolina Department of Environment, Health and Natural Resources (DEHNR). The views are those of the research team and do not necessarily reflect the position of DEHNR.  相似文献   
24.
Rogers DA  Rooney TP  Olson D  Waller DM 《Ecology》2008,89(9):2482-2492
We resurveyed the under- and overstory species composition of 94 upland forest stands in southern Wisconsin in 2002-2004 to assess shifts in canopy and understory richness, composition, and heterogeneity relative to the original surveys in 1949-1950. The canopy has shifted from mostly oaks (Quercus spp.) toward more mesic and shade-tolerant trees (primarily Acer spp.). Oak-dominated early-successional stands and those on coarse, nutrient-poor soils changed the most in canopy composition. Understories at most sites (80%) lost native species, with mean species density declining 25% at the 1-m2 scale and 23.1% at the 20-m2 scale. Woody species have increased 15% relative to herbaceous species in the understory despite declining in absolute abundance. Initial canopy composition, particularly the abundance of red oaks (Quercus rubra and Q. velutina), predicted understory changes better than the changes observed in the overstory. Overall rates of native species loss were greater in later-successional stands, a pattern driven by differential immigration rather than differential extirpation. However, understory species initially found in early-successional habitats declined the most, particularly remnant savanna taxa with narrow or thick leaves. These losses have yet to be offset by compensating increases in native shade-adapted species. Exotic species have proliferated in prevalence (from 13 to 76 stands) and relative abundance (from 1.2% to 8.4%), but these increases appear unrelated to the declines in native species richness and heterogeneity observed. Although canopy succession has clearly influenced shifts in understory composition and diversity, the magnitude of native species declines and failure to recruit more shade-adapted species suggest that other factors now act to limit the richness, heterogeneity, and composition of these communities.  相似文献   
25.
We developed and tested a plant-based index of biological integrity (IBI) and used it to evaluate the existing reclamation wetlands in Alberta’s oil sands mining region. Reclamation plans call for >15,000 ha of wetlands to be constructed, but currently, only about 25 wetlands are of suitable age for evaluation. Reclamation wetlands are typically of the shallow open water type and range from fresh to sub-saline. Tailings-contaminated wetlands in particular may have problems with hydrocarbon- and salt-related toxicity. From 60 initial candidate metrics in the submersed aquatic and floating vegetation communities, we selected five to quantify biological integrity. The IBI included two diversity-based metrics: the species richness of floating vegetation and the percent of total richness contributed by Potamogeton spp. It also included three relative abundance-based metrics: that of Ceratophyllum demersum, of floating leafed species and of alkali-tolerant species. We evaluated the contribution of nonlinear metrics to IBI performance but concluded that the correlation between IBI scores and wetland condition was not improved. The method used to score metrics had an influence on the IBI sensitivity. We conclude that continuous scoring relative to the distribution of values found in reference sites was superior. This scoring approach provided good sensitivity and resolution and was grounded in reference condition theory. Based on these IBI scores, both tailings-contaminated and tailings-free reclamation wetlands have significantly lower average biological integrity than reference wetlands (ANOVA: F 2,59 = 34.7, p = 0.000000000107).  相似文献   
26.
Bhadha, Jehangir H., Casey Schmidt, Robert Rooney, Paul Indeglia, Ruben Kertesz, Elizabeth Bevc, and John Sansalone, 2009. Granulometric and Metal Distributions for Post‐Katrina Surficial Particulate Matter Recovered From New Orleans. Journal of the American Water Resources Association (JAWRA) 45(6):1434‐1447. Abstract: Hurricane Katrina and the resulting failure of the levees that surrounded and protected New Orleans generated a significant detained volume of stormwater within the urban area of New Orleans. Between the inundation resulting from levee failure and eventual pumped evacuation of stormwater from the urban area of New Orleans, a large mass of storm‐entrained particulate matter (PM) was deposited in the inundated areas. This study examined the granulometry and granulometric distribution of metals for post‐Katrina surficial PM deposits recovered from 15 sites (10 inundated and 5 non‐inundated) in New Orleans. Results of this examination were compared to pre‐Katrina data from New Orleans. While post‐Katrina analysis of PM indicates that Pb, Zn, and Cu concentrations for PM are reduced for all sites, inundated sites had higher Cu, Pb, and Zn concentrations for the settleable (~25‐75 μm) and sediment (>75 μm) size fractions. A comparison between total metal concentration and the bioavailable (leachable) fraction for PM reveals that inundated sites had up to 19% higher leachable metal concentration compared to non‐inundated sites. The reduction in PM‐bound total metal concentrations for recovered PM can be explained through a combination of scouring (and therefore change in granulometry from pre‐Katrina) that resulted from transport of suspended PM by storm flows and pumped evacuation; as well as leaching and PM‐based redistribution from extended contact with rainfall and during stormwater detention. New Orleans has been exposed to elevated levels of metals through decades of activities that include vehicular transportation, chemical, industrial, and oil production facilities resulting in higher metal concentrations for urban soil‐residual complexes. As a result, the influent storm flows associated with Katrina as an episodic event cannot solely explain the distribution and fate of PM‐associated metal concentrations.  相似文献   
27.
An incubation experiment was carried out to assess the rate of oxidation of Pb shot and subsequent transfer of Pb to the soil under a range of soil pH conditions. Lead shot corrosion was rapid, so that soil solution and fine earth (<1mm) Pb concentrations increased rapidly within a few months. Corrosion products, dominated by hydrocerussite (Pb(3)(CO(3))(2)(OH)(2)), developed in crusts surrounding individual Pb pellets. However, irrespective of pH, Pb(2+) activities in the soil solutions, modelled using WHAM 6, were much lower than would be the case if they were controlled by the solubility of the dominant Pb compounds present in the Pb shot crust material. In contrast, modelling of soil solid-solution phase distribution of Pb, again using WHAM 6, suggested that, at least during the 24 months of the study, soil solution Pb concentrations were more likely to be controlled by sorption of Pb by the soil solid phase.  相似文献   
28.

The global amount of solid waste has dramatically increased as a result of rapid population growth, accelerated urbanization, agricultural demand, and industrial development. The world's population is expected to reach 8.5 billion by 2030, while solid waste production will reach 2.59 billion tons. This will deteriorate the already strained environment and climate situation. Consequently, there is an urgent need for methods to recycle solid waste. Here, we review recent technologies to treat solid waste, and we assess the economic feasibility of transforming waste into energy. We focus on municipal, agricultural, and industrial waste. We found that methane captured from landfilled-municipal solid waste in Delhi could supply 8–18 million houses with electricity and generate 7140 gigawatt-hour, with a prospected potential of 31,346 and 77,748 gigawatt-hour by 2030 and 2060, respectively. Valorization of agricultural solid waste and food waste by anaerobic digestion systems could replace 61.46% of natural gas and 38.54% of coal use in the United Kingdom, and could reduce land use of 1.8 million hectares if provided as animal feeds. We also estimated a levelized cost of landfill solid and anaerobic digestion waste-to-energy technologies of $0.04/kilowatt-hour and $0.07/kilowatt-hour, with a payback time of 0.73–1.86 years and 1.17–2.37 years, respectively. Nonetheless, current landfill waste treatment methods are still inefficient, in particular for treating food waste containing over 60% water.

  相似文献   
29.

Global industrialization and excessive dependence on nonrenewable energy sources have led to an increase in solid waste and climate change, calling for strategies to implement a circular economy in all sectors to reduce carbon emissions by 45% by 2030, and to achieve carbon neutrality by 2050. Here we review circular economy strategies with focus on waste management, climate change, energy, air and water quality, land use, industry, food production, life cycle assessment, and cost-effective routes. We observed that increasing the use of bio-based materials is a challenge in terms of land use and land cover. Carbon removal technologies are actually prohibitively expensive, ranging from 100 to 1200 dollars per ton of carbon dioxide. Politically, only few companies worldwide have set climate change goals. While circular economy strategies can be implemented in various sectors such as industry, waste, energy, buildings, and transportation, life cycle assessment is required to optimize new systems. Overall, we provide a theoretical foundation for a sustainable industrial, agricultural, and commercial future by constructing cost-effective routes to a circular economy.

  相似文献   
30.

The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号