首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30591篇
  免费   351篇
  国内免费   458篇
安全科学   958篇
废物处理   1455篇
环保管理   3709篇
综合类   5102篇
基础理论   7986篇
环境理论   18篇
污染及防治   8106篇
评价与监测   2099篇
社会与环境   1788篇
灾害及防治   179篇
  2023年   138篇
  2022年   325篇
  2021年   322篇
  2020年   248篇
  2019年   291篇
  2018年   483篇
  2017年   485篇
  2016年   750篇
  2015年   579篇
  2014年   902篇
  2013年   2434篇
  2012年   1078篇
  2011年   1456篇
  2010年   1190篇
  2009年   1204篇
  2008年   1451篇
  2007年   1502篇
  2006年   1279篇
  2005年   1100篇
  2004年   989篇
  2003年   1079篇
  2002年   955篇
  2001年   1240篇
  2000年   863篇
  1999年   521篇
  1998年   348篇
  1997年   358篇
  1996年   357篇
  1995年   424篇
  1994年   447篇
  1993年   354篇
  1992年   374篇
  1991年   352篇
  1990年   386篇
  1989年   341篇
  1988年   297篇
  1987年   279篇
  1986年   223篇
  1985年   250篇
  1984年   266篇
  1983年   257篇
  1982年   241篇
  1981年   222篇
  1980年   175篇
  1979年   194篇
  1978年   176篇
  1975年   140篇
  1974年   117篇
  1972年   130篇
  1971年   131篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO(3)(-) leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1kg ha(-1) year(-1) is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO(3)(-)leaching were 17kg N ha(-1) year(-1). DayCent estimated that elevated NO(3)(-) leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance.  相似文献   
982.
The effect of nitrogen on biomass production, shoot elongation and relative density of the mosses Pleurozium schreberi, Hylocomium splendens and Dicranum polysetum was studied in a chamber experiment. Monocultures were exposed to 10 N levels ranging from 0.02 to 7.35 g N m−2 during a 90-day period. All the growth responses were unimodal, but the species showed differences in the shape parameters of the curves. Hylocomium and Pleurozium achieved optimum biomass production at a lower N level than Dicranum. Pleurozium had the highest biomass production per tissue N concentration. Tolerance to N was the widest in Dicranum, whereas Hylocomium had the narrowest tolerance. Dicranum retained N less efficiently from precipitation than the other two species, which explained its deviating response. All species translocated some N from parent to new shoots. The results emphasize that the individual responses of bryophytes to N should be known when species are used as bioindicators.  相似文献   
983.
The effect of a long-term exposure of tenchs to different concentrations (10 and 100 micro g/L) of the pesticide carbofuran has been evaluated. Microsomal hepatic cytochrome P450 subfamily 1A (CYP1A) and 3A (CYP3A) activities, as well as the phase II enzyme uridine diphospho-glucuronosyltransferase (UDPGT) activity were evaluated as adequate biomarkers of fish exposure to environmentally relevant concentrations of the pesticide carbofuran in freshwater ecosystems. A clear time-dependent inhibition of both CYP1A and UDPGT activities was observed in fish exposed to the highest dose of carbofuran with respect to controls, whereas in the case of CYP3A activity, values of exposed animals did not show a clear pattern of alteration during the experiment. The results of the present study demonstrated that hepatic CYP1A and UDPGT activities from tench could be considered as sensitive biomarkers for carbamate pesticides in polluted water, thus allowing future and ecologically relevant biomonitoring studies with this species.  相似文献   
984.
The adsorption of chloridazon (5-amine-4-chloro-2-phenylpyridazin-3(2H)-one) on kerolite samples heated at 110 degrees C (K-110), 200 degrees C (K-200), 400 degrees C (K-400), 600 degrees C (K-600) and acid-treated with H(2)SO(4) solutions of two different concentrations (0.25 and 0.5 M) (K-0.25 and K-0.5, respectively) from pure water at 25 degrees C has been studied by using batch and column experiments. The adsorption experimental data points were fitted to the Freundlich equation in order to calculate the adsorption capacities (K(f)) of the samples; K(f) values ranged from 184.7 mg kg(-1) (K-0.5) up to 2253 mg kg(-1) (K-600). This indicated that the heat treatment given to the kerolite greatly increases its adsorption capacity for the herbicide whereas the acid treatment produces a clear decrease in the amount of chloridazon adsorbed. The removal efficiency (R) was also calculated; R values ranging from 52.8% (K-0.5) up to 88.3% (K-600). Thus, the results showed that the 600 degrees C heat-treated kerolite was more effective in relation to adsorption of chloridazon and it might be reasonably used in removing this herbicide from water.  相似文献   
985.
In-house developed ELISA was standardized to monitor atrazine residues in different environmental samples. The standard curve was linear, indicating an increase in log concentration with decrease in absorbance (%B/B(0)=1.075-0.042 Log C; r= -0.966). The middle of the test was at 75 ng/L and the lowest detection limit at 4 ng/L. ELISA significantly correlated with the high performance liquid chromatography (HPLC) (r=0.990). Internal validation showed good accuracy and precision. Maximum atrazine residues were present in Jehlum River water/sediments and maize/sugarcane plant roots. Most of the food samples were found to be contaminated. ELISA required less clean-up steps than HPLC, but showed matrix effect in soil/colored extracts.  相似文献   
986.
Ammonia (NH3) fluxes from waste treatment lagoons and barns at two conventional swine farms in eastern North Carolina were measured. The waste treatment lagoon data were analyzed to elucidate the temporal (seasonal and diurnal) variability and to derive regression relationships between NH3 flux and lagoon temperature, pH and ammonium content of the lagoon, and the most relevant meteorological parameters. NH3 fluxes were measured at various sampling locations on the lagoons by a flowthrough dynamic chamber system interfaced to an environmentally controlled mobile laboratory. Two sets of open-path Fourier transform infrared (FTIR) spectrometers were also used to measure NH3 concentrations for estimating NH3 emissions from the animal housing units (barns) at the lagoon and spray technology (LST) sites. Two different types of ventilation systems were used at the two farms. Moore farm used fan ventilation, and Stokes farm used natural ventilation. The early fall and winter season intensive measurement campaigns were conducted during September 9 to October 11, 2002 (lagoon temperature ranged from 21.2 to 33.6 degrees C) and January 6 to February 2, 2003 (lagoon temperature ranged from 1.7 to 12 degrees C), respectively. Significant differences in seasonal NH3 fluxes from the waste treatment lagoons were found at both farms. Typical diurnal variation of NH3 flux with its maximum value in the afternoon was observed during both experimental periods. Exponentially increasing flux with increasing surface lagoon temperature was observed, and a linear regression relationship between logarithm of NH3 flux and lagoon surface temperature (T1) was obtained. Correlations between lagoon NH3 flux and chemical parameters, such as pH, total Kjeldahl nitrogen (TKN), and total ammoniacal nitrogen (TAN) were found to be statistically insignificant or weak. In addition to lagoon surface temperature, the difference (D) between air temperature and the lagoon surface temperature was also found to influence the NH3 flux, especially when D > 0 (i.e., air hotter than lagoon). This hot-air effect is included in the statistical-observational model obtained in this study, which was used further in the companion study (Part II), to compare the emissions from potential environmental superior technologies to evaluate the effectiveness of each technology.  相似文献   
987.
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993–2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions. Seasonal Kendall tests were used to evaluate trends at individual sites.Significant trends occurred during the period in wetfall and snowpack concentrations and deposition, and in precipitation. For the comparison, trends in concentrations of ammonium, nitrate, and sulfate for the two networks were in fair agreement. In several cases, increases in ammonium and nitrate concentrations, and decreases in sulfate concentrations for both wetfall and snowpack were consistent in the three subregions. However, deposition patterns between wetfall and snowpack more often were opposite, particularly for ammonium and nitrate. Decreases in ammonium and nitrate deposition in wetfall in the central and southern rockies subregions mostly were moderately significant (p<0.11) in constrast to highly significant increases in snowpack (p<0.02). These opposite trends likely are explained by different rates of declining precipitation during the recent drought (1999–2004) and increasing concentration. Furthermore, dry deposition was an important factor in total deposition of nitrogen in the region. Sulfate deposition decreased with moderate to high significance in all three subregions in both wetfall and snowpack. Precipitation trends consistently were downward and significant for wetfall, snowpack, and snow-telemetry data for the central and southern rockies subregions (p<0.03), while no trends were noted for the Northern Rockies subregion.  相似文献   
988.
Air pollution and groundwater pollution in conjunction with agricultural activity were investigated in Antayla province on the Turkish Mediterranean coast. The air pollution was investigated in terms of gas-phase nitric acid (HNO3), sulfur dioxide (SO2), ammonia (NH3), and particulate matter for a 6-month period in the atmosphere using a "filter pack" system, which was developed and optimized in our laboratory. Ozone was measured by using an automated analyzer. Among all of the gas-phase pollutants, HNO3 had the lowest concentration (0.42 microg x m(-3)) followed by NH3. Agricultural activities seem to be the major source of observed NH3 in the air. The current state of water pollution was investigated in terms of organochlorine and organophosphorus pesticides around the greenhouses, in which mainly tomato, pepper, and eggplant are cultivated. Water samples were collected from 40 points, 28 of which were wells and 12 of which were surface water. The pesticide concentrations in water samples were determined by means of solid-phase extraction (SPE) followed by a gas chromatography (GC)-electron capture detector (ECD)/nitrogen phosphorus detector (NPD) system. In general, surface water samples were more polluted by the pesticides than groundwater samples. The most frequently observed pesticides were chlorpyriphos (57%) and aldrin (79%) in groundwater, and chlorpyriphos (75%), aldrin, and endosulfan sulfate (83%) in surface water samples. The highest concentrations were observed for fenamiphos (394.8 ng/L) and aldrin (68.51 ng/L) in groundwater, and dichlorvos (322.2 ng/L) and endosulfan sulfate (89.5 ng/L) in surface water samples. At least one pesticide had a concentration above the health limit in 38% of all the water samples analyzed.  相似文献   
989.
In a metal-polluted stream in the Riou Mort watershed in SW France, periphytic biofilm was analyzed for diatom cell densities and taxonomic composition, dry weight and metal bio-accumulation (cadmium and zinc). Periphytic diatom communities were affected by the metal but displayed induced tolerance, seen through structural impact (dominance of small, adnate species) as well as morphological abnormalities particularly in the genera Ulnaria and Fragilaria. Species assemblages were characterized by taxa known to occur in metal-polluted environments, and shifts in the community structure expressed seasonal patterns: high numbers of Eolimna minima, Nitzschia palea and Pinnularia parvulissima were recorded in Summer and Autumn, whereas the species Surirella brebissonii, Achnanthidium minutissimum, Navicula lanceolata and Surirella angusta were dominant in Winter and Spring. Commonly used indices such as the Shannon diversity index and Specific Pollution Sensitivity Index reflected the level of pollution and suggest seasonal periodicity, the lowest diversities being observed in Summer.  相似文献   
990.
Metazachlor is a frequently used herbicide with concentrations in surface waters up to 100 microg L(-1). A long-term mesocosm study was performed in order to investigate effects on stream and pond communities also regarding recovery. Single metazachlor doses of 5, 20, 80, 200, and 500 microg L(-1) were given and the aquatic communities monitored for 140 days. In this paper, special attention is paid to the plankton response and the results of the entire study are summarised. Metazachlor strongly affected the stream and pond mesocosm communities at concentrations higher than 5 microg L(-1). Direct negative effects were most prominent for chlorophytes whereas diatoms and cryptophytes seemed insensitive. The effects on zooplankton were caused by changes in habitat structure due to the strong decline of macrophytes. The slow degradation of metazachlor combined with the absence of recovery in both chlorophytes and macrophytes is likely to cause long-lasting effects on aquatic ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号