首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   8篇
  国内免费   13篇
安全科学   56篇
废物处理   31篇
环保管理   211篇
综合类   91篇
基础理论   160篇
环境理论   2篇
污染及防治   205篇
评价与监测   79篇
社会与环境   39篇
灾害及防治   5篇
  2023年   6篇
  2022年   17篇
  2021年   21篇
  2020年   6篇
  2019年   4篇
  2018年   19篇
  2017年   16篇
  2016年   27篇
  2015年   16篇
  2014年   23篇
  2013年   87篇
  2012年   21篇
  2011年   39篇
  2010年   25篇
  2009年   25篇
  2008年   37篇
  2007年   41篇
  2006年   27篇
  2005年   28篇
  2004年   21篇
  2003年   31篇
  2002年   34篇
  2001年   13篇
  2000年   15篇
  1999年   10篇
  1998年   11篇
  1997年   17篇
  1996年   13篇
  1995年   10篇
  1994年   14篇
  1993年   15篇
  1992年   11篇
  1991年   9篇
  1990年   12篇
  1989年   6篇
  1988年   6篇
  1987年   9篇
  1986年   8篇
  1985年   13篇
  1984年   13篇
  1983年   9篇
  1982年   12篇
  1981年   16篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1975年   5篇
  1956年   3篇
  1955年   3篇
排序方式: 共有879条查询结果,搜索用时 31 毫秒
791.
This risk assessment on chloroform was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 23 studies for fish, 17 studies for invertebrates and 10 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a typical PNEC value of 72 µg/l. Due to limitations of the studies evaluated, a worst PNEC of 1 µg/l could also be used. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.2 µg chloroform per litre of water and a worst case PEC of 5 to 11.5 µg chloroform per litre of water. The calculated PEC/PNEC ratios give a safety margin of 6 to 360 between the predicted no effect concentration and the exposure concentrations. A worst case ratio, however, points to a potential risk for sensitive species. Refinement of the assessment is necessary by looking for more data. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
792.
This risk assessment on tetrachloroethylene (PER) was carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of the "predicted environmental concentrations" (PEC) and the "predicted no effect concentrations" (PNEC) for the marine aquatic environment. In total, 18 studies for fish, 13 studies for invertebrates and 8 studies for algae have been evaluated. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a PNEC value of 51 µg/l. Most of the available monitoring data apply to rivers and estuary waters and were used to calculate PECs. The most recent data (1991-1995) support a typical PEC of 0.2 µg PER/l water and a worst case PEC of 2.5 µg PER/l water. The calculated PEC/PNEC ratios give a safety margin of 20 to 250 between the predicted no effect concentration and the exposure concentration. Additional evaluation of environmental fate and bioaccumulation characteristics showed that no concern is expected for food chain accumulation.  相似文献   
793.
This paper describes a novel technique of measuring ambient hydrogen sulphide (H2S) concentrations simultaneously at several locations around a wastewater treatment plant. A commercially purchased H2S monitor is modified to operate in a static mode to enable degree of darkening on pieces of lead acetate tapes to be correlated againts the exposure duration and the ambient H2S concentration of sewage air. The technique can yield mapped contours of time—average H2S concentrations as low as 0.2 ppm. The methodology is exemplified for a wastewater treatment plant in Ipswich, Queensland. Isopleths of H2S concentration obtained at the wastewater site for two different meteorological conditions reveal that high levels of H2S are detected around the plant's inlet structure and primary clarifiers.  相似文献   
794.
Phosphorus chemistry in streams was evaluated at the paired watershed study at the Bear Brook Watershed, Maine. The West Bear catchment has been treated bimonthly since 1989 with 1,800 eq (NH4)2SO4 ha-1 yr-1. East Bear was the untreated reference watershed. During 1993, concentration of total phosphorus (P) in weekly samples from East and West Bear Brook ranged from 0 to 15 g L-1. The median values were 2 and 4 g L-1 for East and West Bear, respectively. During a high discharge event in January of 1995, the concentration of dissolved P remained relatively constant ( 3 g L-1) as pH decreased from 5.63 to 5.08 and from 5.14 to 4.75 in East and West Bear, respectively. The concentration of total P increased to ca. 60 g L-1 during the rising limb of the hydrograph in West Bear, four times the value in East Bear, total P then declined rapidly as discharge remained high followed by an increase. Dissolved Al increased in both streams during the episodic acidification. West Bear, the more acidic, had concentrations of dissolved Al four times those of East Bear (maximum of 1.1 mg L-1 versus 0.25 mg L-1). Acid-soluble particulate Al increased to 0.2 and 4.2 mg L-1 for East and West Bear, respectively, in parallel to total P (but was 102 greater than total P) and then declined in parallel to total P while discharge remained high. Total P, dissolved P, and particulate Al did not relate to pH. Total P and particulate Al and Fe were strongly correlated. Concurrently, base cations remained relatively constant or decreased slightly. Particulate acid-soluble Al exceeded particulate acid-soluble base cations. We hypothesize that the particulate P was occluded in, or adsorbed on, acid-soluble particulate Al(OH)3. This Al(OH)3. This Al(OH)3 precipitates as emerging acidic groundwater degasses CO2 and pH rises. The export of Al and P is greater from the treated watershed because the induced acidification is translocating more Al from soils to the stream. Most of the export of P is related to acid-soluble Al particulate material.  相似文献   
795.
Biogenic hydrocarbon emission rates from individual plant species have been estimated experimentally placing small plants or branches in enclosures and measuring the emission rates of the compounds. All-Teflon chambers (cuvettes) where air samples are drawn through tubes packed with adsorbents, have been commonly used for plant enclosure. Sampling of carbonyl compounds emitted from plants has been done using 2,4-dinitrophenylhydrazine coated particles and the derivative carbonyl compounds have been analyzed by HPLC-UV. In this work, the enclosure technique using a cuvette for measurements of carbonyl compound emissions from plants was evaluated. Blank measurements in an empty cuvette have revealed quite different results for experiments performed under laboratory and field conditions. Rigorous univariate statistical analysis of the data obtained indicate that the analytical procedure to determine carbonyl compounds at trace levels in emission samples using the cuvette may lead to positive artifacts during field sampling. This analysis applied to laboratory measurements showed no difference in the results for the cuvette and external lines. Multivariate statistical calculations point out that solar light intensity accounts for the high carbonyl compound levels, especially for acetaldehyde, in the empty cuvette.  相似文献   
796.
A residual non-aqueous phase liquid (NAPL) present in the vadose zone can act as a contaminant source for many years as the compounds of concern partition to infiltrating groundwater and air contained in the soil voids. Current pressure-saturation-relative permeability relationships do not include a residual NAPL saturation term in their formulation. This paper presents the results of series of two- and three-phase pressure cell experiments conducted to evaluate the residual NAPL saturation and its impact on the pressure-saturation relationship. A model was proposed to incorporate a residual NAPL saturation term into an existing hysteretic three-phase parametric model developed by Parker and Lenhard [Water Resour. Res. 23(12) (1987) 2187], Lenhard and Parker [Water Resour. Res. 23(12) (1987) 2197] and Lenhard [J. Contam. Hydrol. 9 (1992) 243]. The experimental results indicated that the magnitude of the residual NAPL saturation was a function of the maximum total liquid saturation reached and the water saturation. The proposed model to incorporate a residual NAPL saturation term is similar in form to the entrapment model proposed by Parker and Lenhard, which was based on an expression presented by Land [Soc. Pet. Eng. J. (June 1968) 149].  相似文献   
797.
Fluorene, an energy related polynuclear aromatic hydrocarbon, was applied to several experimental pond ecosystems to effect concentrations of 0.12, 0.5, 2.0, 5.0, and 10.0 mg/L. Water, benthic sediment, and rooted macrophytes were monitored for fluorene residues for 56 days after application. Most of the fluorene at concentrations greater than its water solubility appeared to sublime from the surface of the ponds. The rate of disappearance of fluorene from the water decreased as the application rate increased. This reduction was linked to high concentrations and a flux of fluorene from benthic sediments, macrophytes, and pond surfaces to water columns. Several parameters of photosynthetic primary production were statistically linked to the accelerated disappearance of fluorene from the water.  相似文献   
798.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model was used to assess the effects of potential future climate change on the hydrology of the Upper Mississippi River Basin (UMRB). Calibration and validation of SWAT were performed using monthly stream flows for 1968–1987 and 1988–1997, respectively. The R2 and Nash‐Sutcliffe simulation efficiency values computed for the monthly comparisons were 0.74 and 0.69 for the calibration period and 0.82 and 0.81 for the validation period. The effects of nine 30‐year (1968 to 1997) sensitivity runs and six climate change scenarios were then analyzed, relative to a scenario baseline. A doubling of atmospheric CO2 to 660 ppmv (while holding other climate variables constant) resulted in a 36 percent increase in average annual streamflow while average annual flow changes of ?49, ?26, 28, and 58 percent were predicted for precipitation change scenarios of ?20, ?10, 10, and 20 percent, respectively. Mean annual streamflow changes of 51,10, 2, ?6, 38, and 27 percent were predicted by SWAT in response to climate change projections generated from the CISRO‐RegCM2, CCC, CCSR, CISRO‐Mk2, GFDL, and HadCMS general circulation model scenarios. High seasonal variability was also predicted within individual climate change scenarios and large variability was indicated between scenarios within specific months. Overall, the climate change scenarios reveal a large degree of uncertainty in current climate change forecasts for the region. The results also indicate that the simulated UMRB hydrology is very sensitive to current forecasted future climate changes.  相似文献   
799.
Manufacturing composites with polymers and natural fibers has traditionally been performed using chopped fibers or a non-woven mat for reinforcement. Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be processed into a yarn and then manufactured into a fabric for composite formation. Fabric directly impacts the composite because it contains various fiber types via fiber or yarn blending, fiber length is often longer due to requirements in yarn formation, and it controls the fiber alignment via weaving. Composites created with cotton and flax-containing commercial fabrics and recycled high-density polyethylene (HDPE) were evaluated for physical and mechanical properties. Flax fiber/recycled HDPE composites were easily prepared through compression molding using a textile preform. This method takes advantage of maintaining cotton and flax fiber lengths that are formed into a yarn (a continuous package of short fibers) and oriented in a bidirectional woven fabric. Fabrics were treated with maleic anhydride, silane, enzyme, or adding maleic anhydride grafted polyethylene (MAA-PE; MDEX 102-1, Exxelor® VA 1840) to promote interactions between polymer and fibers. Straight and strong flax fibers present problems because they are not bound as tightly within yarns producing weaker and less elastic yarns that contain larger diameter variations. As the blend percentage and mass of flax fibers increases the fabric strength, and elongation generally decrease in value. Compared to recycled HDPE, mechanical properties of composite materials (containing biodegradable and renewable resources) demonstrated significant increases in tensile strength (1.4–3.2 times stronger) and modulus of elasticity (1.4–2.3 times larger). Additional research is needed to improve composite binding characteristics by allowing the stronger flax fibers in fabric to carry the composites load.  相似文献   
800.
In a pilot project performed at a fertilizer manufacturing facility, a one‐step chemical oxidation technique successfully treated urea‐ and ammonium‐contaminated groundwater. The oxidation reaction occurred in an 1,100‐gallon batch reactor. The contaminated inflow was buffered by the metered addition of sodium bicarbonate solution and subsequently treated with sodium hypochlorite in an 8:1 weight ratio of Cl2:N. In an instantaneous reaction, the urea and ammo‐nium‐N were completely oxidized to nitrogen gas that was vented to the atmosphere during mixing. The pH of the reactor discharge was ?6.5. Sodium sulfite was used to reduce residual hypochlorite in the reactor effluent to chloride to provide process water with characteristics suitable for discharge. Oxidation rates were similar with different strengths of hypochlorite; however, a 5 to 6 percent sodium hypochlorite (as Cl2) solution was the most stable. © 2005 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号