首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   4篇
  国内免费   12篇
安全科学   26篇
废物处理   17篇
环保管理   94篇
综合类   52篇
基础理论   81篇
污染及防治   123篇
评价与监测   42篇
社会与环境   26篇
灾害及防治   3篇
  2023年   5篇
  2022年   12篇
  2021年   15篇
  2020年   4篇
  2018年   10篇
  2017年   9篇
  2016年   15篇
  2015年   11篇
  2014年   14篇
  2013年   48篇
  2012年   10篇
  2011年   24篇
  2010年   19篇
  2009年   16篇
  2008年   20篇
  2007年   22篇
  2006年   19篇
  2005年   11篇
  2004年   16篇
  2003年   17篇
  2002年   17篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1998年   9篇
  1997年   10篇
  1996年   7篇
  1995年   4篇
  1993年   8篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1979年   4篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1964年   2篇
  1963年   2篇
  1958年   2篇
  1957年   2篇
  1956年   3篇
  1955年   3篇
排序方式: 共有464条查询结果,搜索用时 167 毫秒
111.
The social dimensions of the mining industry are increasingly acknowledged as critical to business success, yet remain the least understood aspect of the business concept of sustainable development—the ‘triple bottom line’ of economy, environment and society.  相似文献   
112.
113.
ABSTRACT: Stable isotopes of deuterium and oxygen-18 of surface and ground water, together with anion concentrations and hydraulic gradients, were used to interpret mixing and flow in ground water impacted by artificial recharge. The surface water fraction (SWF), the percentage of surface water in the aquifer impacted via recharge, was estimated at different locations and depths using measured deuterium/hydrogen (DIH) ratios during the 1992, 1993, and 1994 recharge seasons. Recharged surface water completely displaced the ground water beneath the recharge basins from the regional water table at 7.60 m to 12.16 m below the land surface. Mixing occurred beneath the recharge structures in the lower portions of the aquifer (>12.16 m). Approximately 12 m down-gradient from the recharge basin, the deeper zone (19.15 m depth) of the primary aquifer was displaced completely by recharged surface water within 193, 45, and 55 days in 1992, 1993, and 1994, respectively. At the end of the third recharge season, recharged surface water represented ~50 percent of the water in the deeper zone of the primary aquifer ~1000 m downgradient from the recharge basin. A classic asymmetrical distribution of recharged surface water resulted from the recharge induced horizontal and vertical hydraulic gradients. The distribution and breakthrough times of recharged surface water obtained with stable isotopes concurred with those of major anions and bromide in a tracer test conducted during the 1995 recharge season. This stable isotope procedure effectively quantified mixing between surface and ground water.  相似文献   
114.
ABSTRACT: Wildfires in 1988 burned over 2000 square miles of the greater Yellowstone area in Montana and Wyoming in the largest fires in the history of Yellowstone National Park (YNP). A four-year postfire study to estimate fire-related changes in suspended sediment transport on the Yellowstone River and its principal tributary in YNP, the Lamar River, benefitted from a recently completed three-year prefire baseline study. Both studies took daily depth-integrated samples from April through September. Fire-related changes in suspended sediment were distinguished from natural climatic variations by two methods: comparison of forecast postfire sediment loads estimated with prefire sediment-rating equations to measured postfire loads; and by postfire changes in suspended sediment load expressed per unit volume runoff. Both methods indicated postfire sediment increases that varied according to season. The higher elevation Lamar River basin had little postfire increase in spring snowmelt season sediment but large increases in summer sediment load. The Yellowstone River had postfire increases in sediment load for the spring but did not reflect the large summer increases of its upstream tributary. The reasons for the difference in postfire snowmelt sediment response are unclear but may relate to basin elevation differences, the effects of unburned watersheds, and cooler postfire springs. The few high streamflow snowmelt events in the postfire period mitigated postfire sediment increases.  相似文献   
115.
Confined flow toward a single well of finite radius in an extensive aquifer of uniform transmissibility is studied under the assumption of time-dependent drawdown. Three particular cases are considered: (a) linear drawdown (including constant drawdown); (b) exponential drawdown; (c) periodic (sinusoidal) drawdown. The differential equation governing unsteady axial symmetric flow toward a single well in a confined aquifer is solved for the three different situations by the use of the Laplace transform method. The resulting expressions are integrated by adapting a modified Gemant scheme. General computer programs have been developed and operated for several combinations of characteristics. The results are plotted to show the effect of time dependent drawdown on the variation of the well discharge and the piezometric head distribution.  相似文献   
116.
ABSTRACT: The size, scale, and number of subwatersheds can affect a watershed modeling process and subsequent results. The objective of this study was to determine the appropriate level of subwatershed division for simulating flow, sediment, and nutrients over 30 years for four Iowa watersheds ranging in size from 2,000 to 18,000 km2 with the Soil and Water Assessment Tool (SWAT) model. The results of the analysis indicated that variation in the total number of subwatersheds had very little effect on streamflow. However, the opposite result was found for sediment, nitrate, and inorganic P; the optimal threshold subwatershed sizes, relative to the total drainage area for each watershed, required to adequately predict these three indicators were found to be around 3, 2, and 5 percent, respectively. Decreasing the size of the subwatersheds below these threshold levels does not significantly affect the predicted levels of these environmental indicators. These threshold subwatershed sizes can be used to optimize input data preparation requirements for SWAT analyses of other watersheds, especially those within a similar size range. The fact that different thresholds emerged for the different indicators also indicates the need for SWAT users to assess which indicators should have the highest priority in their analyses.  相似文献   
117.
Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality.  相似文献   
118.
Profiles of ground water pesticide concentrations beneath the Nebraska Management Systems Evaluation Area (MSEA) describe the effect of 20 yr of pesticide usage on ground water in the central Platte Valley of Nebraska. During the 6-yr (1991-1996) study, 14 pesticides and their transformation products were detected in 7848 ground water samples from the unconfined water table aquifer. Triazine and acetamide herbicides applied on the site and their transformation products had the highest frequencies of detection. Atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] concentrations decreased with depth and ground water age determined with 3H/3He dating techniques. Assuming equivalent atrazine input during the past 20 yr, the measured average changes in concentration with depth (age) suggest an estimated half-life of >10 yr. Hydrolysis of atrazine and deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to hydroxyatrazine [6-hydroxy-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] appeared to be the major degradation route. Aqueous hydroxyatrazine concentrations are governed by sorption on the saturated sediments. Atrazine was detected in the confined Ogallala aquifer in ultra-trace concentrations (0.003 microg L(-1)); however, the possibility of introduction during reverse circulation drilling of these deep wells cannot be eliminated. In fall 1997 sampling, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] was detected in 57% of the 230 samples. Metolachlor oxanilic acid [(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl) amino]oxo-acetic acid] was detected in most samples. In ground water profiles, concentrations of metolachlor ethane sulfonic acid [2-[(ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxo-ethanesulfonic acid] exceeded those of deethylatrazine. Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] was detected in <1% of the samples; however, alachlor ethane sulfonic acid [2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid] was present in most samples (63%) and was an indicator of past alachlor use.  相似文献   
119.
/ Whereas habitat conservation plans (HCPs) have been intended to provide comprehensive environmental mitigation for multiple species, they often narrow in focus to one species and either one mitigation site or unspecified sites. We developed an indicators framework from which to rate land units for their ecological integrity, collateral values (nonbiological qualities that can improve conservation), and restoration and conservation opportunities. The ratings of land units were guided by the tenets of conservation biology and principles of landscape and ecosystem ecology, and they were made using existing physical and floral information managed on a GIS. As an example of how the indicators approach can be used for HCPs, the 29 legally rare species targeted by the Yolo County HCP were each associated with vegetation complexes and agricultural crops, the maps of which were used for rating some of the landscape indices. The ratings were mapped so that mitigation can be directed to the places on the landscape where the legally rare species should benefit most from conservation practices. The most highly rated land units for conservation opportunity occurred along streams and sloughs, especially where they emerged from the foothills and entered the Central Valley and where the two largest creeks intersected the Sacramento River flood basin. We recommend that priority be given to mitigation or conservation at the most highly rated land units. The indices were easy to measure and can be used with other tools to monitor the mitigation success. The indicators framework can be applied to other large-area planning efforts with some modifications.KEY WORDS: Ecosystem; Indicators; Landscape; Mitigation; Planning; Yolo County; California  相似文献   
120.
ABSTRACT: Geomorphic processes may partly determine channel geometry. Soil particle uplift during freezing and thawing cycles and bank sloughing during wetting and drying periods were observed. Soil properties and channel dimension were measured to determine the dominant processes controlling channel geometry in eight small (mean area 0.096 km2) drainages in Logan Canyon, Utah. Soil cohesion was low (plasticity index > 15) for all but one of the drainages sampled. Basin scale geomorphic variables were examined to determine if they control channel dimension. Bankfull width was highly correlated to channel length and valley length with r2 values of 0.85 and 0.84, respectively. A strong canonical correlation (0.64) showed that distance from the watershed divide, bank liquid limit, and bank sand content were effective predictor variables of bankfull width and depth. The interrelations between geomorphic and pedogenic processes were the strongest determinants of ephemeral channel dimension in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号