首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   0篇
  国内免费   2篇
废物处理   3篇
环保管理   8篇
综合类   10篇
基础理论   19篇
污染及防治   38篇
评价与监测   21篇
社会与环境   11篇
灾害及防治   1篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   1篇
  2014年   10篇
  2013年   10篇
  2012年   2篇
  2011年   5篇
  2010年   8篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   7篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   6篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有111条查询结果,搜索用时 218 毫秒
41.
A study was conducted to evaluate the effect of long-term irrigation of sewage contaminated with heavy metals like Cd, Cr, Cu and Pb on microbial and biochemical parameters of soils of West Bengal, India. The microbial parameters included microbial biomass carbon (MBC), microbial metabolic quotient; the biochemical parameters included fluorescein diacetate hydrolyzing activity, beta-glucosidase, urease, phosphatase, and aryl sulphatase activities. A sequential extraction technique was used to quantify water soluble, exchangeable, carbonate bound, Fe/Mn-oxide bound, organically bound, and residual metal fractions. Metal concentrations in the two most labile fractions (i.e., water soluble and exchangeable fractions) were generally low. Total metal concentrations at each site seemed to be associated with soil amorphous Fe and Al minerals. The MBC and the enzymes studied were significantly and negatively correlated with water soluble and exchangeable metals but not significantly correlated with other forms, indicating that water soluble and exchangeable forms exerted a strong inhibitory effect on the soil microbial and biochemical parameters. It was concluded that irrigating soils with metal contaminated sewage seemed to damage soil quality in the long term.  相似文献   
42.
The main aim of this study was to assess the impact of pesticidal residues on soil microbial and biochemical parameters of the tea garden soils. The microbial biomass carbon (MBC), basal (BSR) and substrate induced respirations (SIR), beta-glucosidase activity and fluorescein diacetate hydrolyzing activity (FDHA) of six tea garden soils, along with two adjacent forest soils (control) in West Bengal, India were measured. The biomass and its activities and biochemical parameters were generally lower in the tea garden soils than the control soils. The MBC of the soils ranged from 295.5 to 767.5 micro g g(- 1). The BSR and SIR ranged from 1.65 to 3.08 mu g CO2-C g(- 1) soil h(- 1) and 3.08 to 10.76 micro g CO2-C g(- 1)h(- 1) respectively. The beta-glucosidase and FDHA of the soils varied from 33.3 and 76.3 micro g para-nitrophenol g(- 1) soil h(- 1) and 60.5 to 173.5 micro g fluorescein g(- 1)h(- 1)respectively. The tea garden soils contained variable residues of organophosphorus and organochlorine pesticides, which negatively affected the MBC, BSR, SIR, FDHA and beta -glucosidase activity. Ethion and chlorpyriphos pesticide residues in all the tea garden soils varied from 5.00 to 527.8 ppb and 17.6 to 478.1 ppb respectively. The alpha endosulfan, beta endosulfan and endosulfan sulfate pesticide residues in the tea garden soils ranged from 7.40 to 81.40 ppb, 8.50 to 256.1 ppb and 55 to 95.9 ppb respectively. Canonical correlation analysis shows that 93% of the total variation was associated with the negative impact of chlorpyriphos, beta and alpha endosulfan and endosulfan sulfate on MBC, BSR and FDHA. At the same time ethion had negative impact on SIR and beta-glucosidase. Data demonstrated that the pesticide residues had a strong impact on the microbial and biochemical components of soil quality.  相似文献   
43.
44.
Mathematical modeling of competing risks often uses a single risk function for all individuals within a population. In this paper we use several specific examples to argue that such representations remain approximations until account is taken of the existence of genetic variability within and between populations, and the impact of this upon liability to disease. The extent of human genetic variability is also indicated.  相似文献   
45.
In this paper we have proposed and analyzed a simple mathematical model consisting of four variables, viz., nutrient concentration, toxin producing phytoplankton (TPP), non-toxic phytoplankton (NTP), and toxin concentration. Limitation in the concentration of the extracellular nutrient has been incorporated as an environmental stress condition for the plankton population, and the liberation of toxic chemicals has been described by a monotonic function of extracellular nutrient. The model is analyzed and simulated to reproduce the experimental findings of Graneli and Johansson [Graneli, E., Johansson, N., 2003. Increase in the production of allelopathic Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2, 135–145]. The robustness of the numerical experiments are tested by a formal parameter sensitivity analysis. As the first theoretical model consistent with the experiment of Graneli and Johansson (2003), our results demonstrate that, when nutrient-deficient conditions are favorable for the TPP population to release toxic chemicals, the TPP species control the bloom of other phytoplankton species which are non-toxic. Consistent with the observations made by Graneli and Johansson (2003), our model overcomes the limitation of not incorporating the effect of nutrient-limited toxic production in several other models developed on plankton dynamics.  相似文献   
46.
Even though plenty of literature is available on the biosynthesis of metal nanoparticles, there are serious lacunae on the mechanisms of their formation. In the present study, the mechanism of formation of mono-crystalline silver nanoparticles using a fruit extract of the ornamental tree Thevetia peruviana is emphasized, i.e. how the pH of the reaction mixture affected reaction kinetics and size of the nanoparticles. The facilitation of formation of Ag2O at higher pH resulted in a faster rate of particle formation. The diameter of the bare particles at neutral pH determined by field emission scanning electron microscopy and the hydrodynamic diameter determined by dynamic light scattering were 53 and 104 nm, respectively. The silver nanoparticles exhibited good inactivation of Escherichia coli due to participation of free radicals as evidenced by electron spin resonance spectroscopy.  相似文献   
47.
A range of organochlorinated compounds have been consumed in China, India and the countries of mainland southeast Asia (MSA). Considering their persistence in the environment and ability in long-range atmospheric transport (LRAT), the potential outflow of these compounds from this region is therefore of great concern in the context of the global distribution of toxic chemicals. As part of a monitoring campaign aimed at investigating the LRAT of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) from southern China, MSA and northern India, atmospheric levels of OCPs and PCBs were measured once a week from October 2005 through December 2006 at Tengchong Mountain (TM), a remote site located in south-western China. The average concentrations of OCPs were found to be higher than those in other remote stations in the Arctic and the Tibetan plateau, except for α-hexachlorocyclohexane (α-HCH). A high level of β-HCH and low α-HCH/β-HCH ratio was attributed to an accidental release of β-HCH from unknown sources, besides obvious evidence of lindane (γ-HCH) and technical HCH usage. Temporal variations of chlordanes and endosulfan were related to the usage pattern of these compounds, as well as LRAT. In contrast, dichlorodiphenyltrichloroethane (DDT) exhibited a relatively minor seasonal variation. The OCP levels at the monitoring site were found to be related to the air parcel back trajectories on the basis of four distinct clusters. Elevated levels of HCHs and DDTs were observed when air parcels originated from northern India where considerable OCP usage was reported recently, while high levels of γ-HCH and TC (trans-chlordane) were mainly associated with air masses from southern China and northern MSA. The study highlighted the high background level of OCPs as well as their temporal patterns of trans-boundary LRAT in the MSA region.  相似文献   
48.
The concern over ensuing freshwater scarcity has forced the developing countries to delve for alternative water resources. In this study, we examined the potential of stagnant surface water bodies (SSWBs) as alternative freshwater resources in the densely populated Chittagong metropolitan area (CMPA) of Bangladesh??where there is an acute shortage of urban freshwater supply. Water samples were collected at 1-month intervals for a period of 1 year from 12 stations distributed over the whole metropolis. Samples were analyzed for pH, water temperature (WTemp), turbidity, electrical conductivity (EC), total dissolved solids, total solids, total hardness, dissolved oxygen (DO), chloride, orthophosphates, ammonia, total coliforms (TC), and trace metal (Cd, Cr, Cu, Pb, As, and Fe) concentrations. Based on these parameters, different types of water quality indices (WQIs) were deduced. WQIs showed most of CMPA-SSWBs as good or medium quality water bodies, while none were categorized as bad. Moreover, it was observed that the minimal water quality index (WQIm), computed using five parameters: WTemp, pH, DO, EC, and turbidity, gave a reliable estimate of water quality. The WQIm gave similar results in 72% of the cases compared with other WQIs that were based on larger set of parameters. Based on our finding, we suggest the wider use WQIm in developing countries for assessing health of SSWBs, as it will minimize the analytical cost to overcome the budget constraints involved in this kind of evaluations. It was observed that except turbidity and TC content, all other quality parameters fluctuated within the limit of the World Health Organization suggested standards for drinking water. From our findings, we concluded that if the turbidity and TC content of water from SSWBs in CMPA are taken care of, they will become good candidates as alternative water resources all round the year.  相似文献   
49.
50.
A combination of the urban heat island effect and a rising temperature baseline resulting from global climate change inequitably impacts socially vulnerable populations residing in urban areas. This article examines racial/ethnic and socioeconomic inequities in the spatial distribution of exposure to urban heat in the context of climate justice and residential segregation in the U.S. An urban heat risk index (UHRI) is calculated from measures of land surface temperature, structural density, and vegetation abundance, acquired from summer 2010 remote sensing imagery. Twenty of the largest metropolitan statistical areas (MSAs) in the U.S. are selected and analysed using census tract-level socio-demographic data from the U.S. Census. Multilevel modelling is utilised to examine the statistical associations between urban heat, minority status, socioeconomic disadvantage, and MSA-level segregation of racial/ethnic minority groups. Variables representing socioeconomic status (i.e. household income, home ownership, and education level) are consistently and significantly associated with greater urban heat exposure. Minority status and measures of segregation have a significant but varied relationship with urban heat exposure, indicating that there are inconsistent associations with urban heat due to differing social geographies. Urban heat and social vulnerability present a varying landscape of thermal inequity in different metropolitan areas, associated in many cases with residential segregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号