首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1734篇
  免费   19篇
  国内免费   46篇
安全科学   26篇
废物处理   122篇
环保管理   179篇
综合类   147篇
基础理论   307篇
环境理论   2篇
污染及防治   574篇
评价与监测   324篇
社会与环境   112篇
灾害及防治   6篇
  2023年   61篇
  2022年   177篇
  2021年   119篇
  2020年   27篇
  2019年   47篇
  2018年   86篇
  2017年   92篇
  2016年   114篇
  2015年   47篇
  2014年   94篇
  2013年   192篇
  2012年   83篇
  2011年   100篇
  2010年   72篇
  2009年   64篇
  2008年   75篇
  2007年   59篇
  2006年   70篇
  2005年   39篇
  2004年   29篇
  2003年   22篇
  2002年   32篇
  2001年   9篇
  2000年   8篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1989年   2篇
  1988年   3篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1979年   2篇
  1969年   1篇
  1966年   1篇
  1965年   2篇
  1964年   2篇
  1962年   2篇
  1961年   4篇
  1958年   3篇
  1957年   3篇
  1956年   2篇
  1955年   4篇
  1953年   1篇
排序方式: 共有1799条查询结果,搜索用时 15 毫秒
991.
Carbon studies in tropical rivers have gained significance since it was realized that a significant chunk of anthropogenic CO2 emitted into the atmosphere returns to the biosphere, that is eventually transported by the river and locked up in coastal sediments for a few thousand years. Carbon studies are also significant because dissolved organic carbon (DOC) is known to complex the toxic trace metals in the river and carry them in the dissolved form. For the first time, this work has made an attempt to study the variations in DOC concentrations in space and time for a period of 19 months, and estimate their fluxes in the largest peninsular Indian river, the Godavari at Rajahmundry. Anthropogenic influence on DOC concentrations possibly from the number of bathing ghats along the banks and domestic sewage discharge into the river are evident during the pre-monsoon of 2004 and 2005. The rise in DOC concentrations at the onset of monsoon could be due to the contributions from flood plains and soils from the river catchment. Spatial variations highlighted that the DOC concentrations in the river are affected more by the anthropogenic discharges in the downstream than in the upstream. The discharge weighted DOC concentrations in the Godavari river is 3–12 times lower than Ganga-Brahmaputra, Indus and major Chinese rivers. The total carbon fluxes from the Godavari into the Bay of Bengal is insignificant (0.5%) compared to the total carbon discharges by major rivers of the world into oceans.  相似文献   
992.
An attempt was made to investigate the relationship between raw coal characteristics and effluent quality in two coking coal washeries of Central Coalfields Limited, Kedla and Rajrappa in Jharkhand State, India. Coal samples-raw coal feed, washed fine clean coal, washed coarse clean coal, middlings and rejects were collected. Similarly, raw water (intake to washery) and effluent samples generated in the washeries, namely, fine coal jig under water, coarse coal jig under water and slurry pond water were also collected over a period of 6 months. Parameters outlined in Ministry of Environment and Forest (MoEF) Schedule VI Indian standards were determined, both in coal samples and water/washery effluent samples. Apart from the parameters listed in the standard, sodium, potassium, calcium, magnesium, sulphate and chloride found to be present in coal were also determined in coal and water samples. The processing results essentially in production of huge quantities of suspended material, which is beyond the stipulated limit of 100mg/l as specified in the Standard. Lowering of pH was observed in both the washeries. The trace/heavy elements were found to be concentrated in the heavier fractions in rejects produced from the washery. The concentrations of major elements in coal-Na, K, Ca, Mg, and minor elements in coal-Mn; F, SO4 and Cl were found to be higher in process water than in raw water indicating that these elements are transferred from coal to the water in washeries. However, only in the case of Mn, the stipulated limit of the effluent standard was exceeded. Trace elements like As, Se, Hg, Cd, though found to be present in coal, were absent in the process water indicating that these elements are not released by coal during washing.  相似文献   
993.
Measurements of light (C(2)-C(5)) non-methane hydrocarbons (NMHCs) were made along with ozone (O(3)), oxides of nitrogen (NO(x)), carbon monoxide (CO) and methane (CH(4)) at Hissar and Kanpur in the Indo-Gangetic Plain (IGP) in India during the month of December, 2004. Air samplings during noon and evening hours provided an opportunity to study the emission characteristics and changes during this period at these sites. The mixing ratio of O(3) was higher during noon hours due to photochemical formation, while the levels of precursor gases showed elevated values during the evening hours on a clear sky day. On foggy days there is no such variation. The lower mixing ratios of O(3) observed on foggy days could be due to the slower rate of photochemical formation caused by a reduction in solar flux and surface deposition caused by the presence of a stable planetary boundary layer. Propene and ethene show the highest evening to noon ratio due to their faster reactivities with OH radicals. Correlations among different species of the measured gases indicate contributions of emissions from biomass and biofuel burning as well as fossil fuel combustion. Although qualitatively in relation to O(3), the propylene (propene) equivalents of NMHCs have been calculated to investigate their roles in O(3) photochemistry and compared with the data from Ahmedabad, an urban site in western India. The important result, which has emerged from the analysis of the observed data, is that while the total amount of these NMHCs is least at Hissar and highest at Ahmedabad, the total propylene-equivalent is highest at Hissar and lowest at Ahmedabad. Further, these two sites in the IGP show significant contributions, almost 72-77%, by propene and ethene while the contribution by these two gases at Ahmedabad is only about 47%. The surface level mixing ratios of O(3) could be treated as representative for the chemical characterization of air mass at a regional scale over the IGP as the month long trends of O(3) show significant similarity compared to the trends in precursors at the two sites.  相似文献   
994.
995.
Field experiments were conducted in open top chamber during rabi seasons of 2009–10 and 2010–11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80–85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5–10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF?+?CO2, NF air and 550?±?50 ppm CO2), elevated ozone (EO, NF air and 25–35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO?+?CO2, NF air, 25–35 ppb O3 and 550?±?50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18–20 %. Elevated CO2 (500?±?50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.  相似文献   
996.
Sediment quality data provide essential information for evaluating ambient environmental quality conditions. Sediments are important carriers of trace metals in the environment and reflect the current quality of the system. In the present study, distribution of mercury, lead, cadmium, copper, zinc, chromium and manganese in Cochin estuary were studied. The distribution of oxides of metals and textural quality were also studied in detail. It was found that the concentration of metals in the sediments near the industrial belt was extremely high. Correlation of different metals and metal oxides were analysed. It was found that all the alloys were correlated significantly (α?<?0.01) but in case of metals, correlation was only among certain metals.  相似文献   
997.
Concentrations of heavy metals (Cu, Cr, Fe, Pb, Zn, Hg, Ni, and Cd) and macronutrients (Mn) were measured in industrial effluents, water, bottom sediments, and wetland plants from a reservoir, Govind Ballabh (G.B.) Pant Sagar, in Singrauli Industrial region, India. The discharge point of a thermal power plant, a coal mine, and chlor-alkali effluent into the G.B. Pant Sagar were selected as sampling sites with one reference site in order to compare the findings. The concentrations of heavy metals in filtered water, sieved sediment samples (0.4-63 microm), and wetland plants were determined with particle-induced X-ray emission. The collected plants were Aponogeton natans, L. Engl. & Krause, Cyperus rotundus, L., Hydrilla verticillata, (L.f.) Royle, Ipomoea aquatica, Forssk., Marsilea quadrifolia, L., Potamogeton pectinatus, L., Eichhornia crassipes, (Mart.) Solms Monogr., Lemna minor, L., Spirodela polyrhiza (L.) Schleid. Linnaea, Azolla pinnata, R.Br., Vallisneria spiralis, L., and Polygonum amphibium, L. In general, metal concentration showed a significant positive correlation between industrial effluent, lake water, and lake sediment (p < 0.01). Likewise, significant positive correlation was recorded with metals concentration in plants and lake ambient, which further indicated the potential of aforesaid set of wetland macrophytes for pollution monitoring.  相似文献   
998.
Leachate produced by municipal solid waste dumping site near the metropolitan city of Pune, India was examined for its pollution potential and impact on surrounding shallow basaltic aquifers. Twenty-eight physico-chemical parameters during post- and pre-monsoon seasons (Nov 2006 and May 2007) were determined to assess the seasonal variation in the leachate pollution index (LPI) as well as in the groundwater quality. The leachate demonstrated higher LPI value during pre-monsoon, comparable to those at other metropolises outside India. Potentially toxic leachates derived from the dumping site have largely influenced the adjoining basaltic aquifers through two different modes of transport. Despite high contents of heavy metals (Al, Cd, Cr, Cu, Co, Fe, Mn, Ni, Pb and Zn) in the leachate, the aquifers in the close proximity of landfill site are least polluted by metallic contaminants possibly due to redox controls. Various geoenvironmental features governing the dispersal of leachate contaminants in the basaltic aquifers under semi-arid climatic regime have been identified and discussed. Although a few remedial measures have been suggested to mitigate the impact of leachate percolation and dispersion, the present study demands for a proper solid waste management in metropolitan cities.  相似文献   
999.
Chromium speciation in groundwater of a tannery polluted area was investigated for the distribution of chromium species and the influence of redox couples such as Fe(III)/Fe(II) and Mn(IV)/Mn(II). Speciation analysis was carried out by ammonium pyrolidinedithiocarbamate (APDC)–methylisobutylketone (MIBK) procedure. The groundwater samples were analyzed for Cr(III), Cr(VI), and Cr(III)-organic complexes. The APDC could not extract the Cr(III)-organic complexes, but HNO3 digestion of the groundwater samples released the Cr(III)-organic complexes. The groundwater of the area is relatively oxidizing with redox potential (E h) and dissolved oxygen (DO) ranged between 65 and 299 mV and 0.25 and 4.65 mg L???1, respectively. The Fe(II) reduction of Cr(VI) was observed in some wells, but several wells that had Fe(II)/Cr(VI) concentrations more than the stoichiometric ratio (3:1) of the reduction reaction also had appreciable concentration of Cr(VI). This could partly be due to the oxidation of Fe(II) to Fe(III) by DO. It appears that the occurrence of Mn more than the Fe(II) concentration was also responsible for the presence of Cr(VI). Other reasons could be the Fe(II) complexation by organic ligands and the loss of reducing capacity of Fe(II) due to aquifer materials, but could not be established in this study.  相似文献   
1000.
A field study was conducted in the fly ash lagoons of Santandih Thermal Power Plant located in West Bengal (India) to find out total, EDTA and DTPA extractable metals in fly ash and their bioaccumulation in root and shoot portion of the naturally growing vegetation. Fly ash sample has alkaline pH and low conductivity. The concentration of total Cu, Zn, Pb and Ni were found higher than weathered fly ash and natural soil, where as Co, Cd and Cr were found traces. Five dominant vegetation namely, Typha latifolia, Fimbristylis dichotoma, Amaranthus defluxes, Saccharum spontaenum and Cynodon dactylon were collected in the winter months (November–December). Bioaccumulation of metals in root and shoot portions were found varied significantly among the species, but all concentration were found within toxic limits. Correlation between total, DTPA and EDTA extractable metals viz. root and shoot metals concentration were studied. Translocation factor (TF) for Cu, Zn and Ni were found less than unity, indicates that these metals are immobilized in the root part of the plants. Metals like Mn have TF greater than unity. The study infers that natural vegetation removed Mn by phytoextraction mechanisms (TF > 1), while other metals like Zn, Cu, Pb and Ni were removed by rhizofiltration mechanisms (TF < 1). The field study revealed that T. latifolia and S. spontaenum plants could be used for bioremediation of fly ash lagoon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号