首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   909篇
  免费   12篇
  国内免费   12篇
安全科学   39篇
废物处理   33篇
环保管理   206篇
综合类   123篇
基础理论   226篇
污染及防治   207篇
评价与监测   67篇
社会与环境   25篇
灾害及防治   7篇
  2023年   6篇
  2022年   9篇
  2021年   8篇
  2020年   18篇
  2019年   13篇
  2018年   15篇
  2017年   13篇
  2016年   19篇
  2015年   19篇
  2014年   29篇
  2013年   86篇
  2012年   34篇
  2011年   58篇
  2010年   29篇
  2009年   42篇
  2008年   43篇
  2007年   69篇
  2006年   35篇
  2005年   31篇
  2004年   28篇
  2003年   30篇
  2002年   32篇
  2001年   26篇
  2000年   16篇
  1999年   13篇
  1998年   11篇
  1997年   13篇
  1996年   12篇
  1995年   7篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   10篇
  1989年   12篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   4篇
  1982年   4篇
  1981年   12篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1975年   8篇
  1974年   5篇
  1972年   3篇
排序方式: 共有933条查询结果,搜索用时 15 毫秒
891.
ABSTRACT: More than 300 landslides and debris flows were triggered by an October 1993 storm on Prince of Wales Island, southeast Alaska. Initiation, runout, and deposition patterns of landslides that occurred within clearcuts, second‐growth, and old‐growth forests were examined. Blowdown and snags, associated with cedar decline and “normal” rates of mortality, were found adjacent to at least 75 percent of all failures regardless of land use. Nearly 50 percent of the landslides within clearcuts occurred within one year following timber harvest; more than 70 percent of these sites had hydrophytic vegetation directly above failures. In following the runout paths of failures, significantly more erosion per unit area occurred within clearcuts than in old‐growth forests on slopes with gradients from 9 to 28* (16 to 54 percent). Runout length, controlled by hillslope position within deglaciated valleys, was typically longer in old‐growth forests than in second growth and clearcuts (median values were 334, 201, and 153 m, respectively). Most landslides and debris flows deposited in first‐and second‐order channels before reaching the main stem channels used by anadromous fish. Slide deposits in old‐growth forests were composed of a higher proportion of woody debris than deposits derived from slides in second growth or clearcuts.  相似文献   
892.
The relationship between fluoride-induced lesions, measured using an incremental scoring system, and fluoride concentration was investigated in the teeth of the field vole (Microtus agrestis). Both the magnitude of lesion score and the severity of observed lesions in both incisor and molar teeth was correlated with the respective tissue fluoride concentration. This relationship was observed not only in animals trapped from sites contaminated by industrial fluorides, but also those bred and maintained under laboratory conditions and consuming fluoride in either diet or drinking water. Although some variation occurred between field and laboratory animals as to the mean fluoride concentrations in the incisor or molar for each specific lesion score, this may result in part from differences in the nature of the assimilable fluoride in laboratory diets compared to those consumed by wild animals. The practical application of the relationship between dental lesion score and tissue fluoride concentration to monitoring environmental fluoride contamination is discussed. Because the incisor and molar teeth of the field voles are open-rooted and grow throughout life, they are sensitive to even minor temporal changes in fluoride concentration in tissue fluids and blood and, by inference, in the diet and the environment. Therefore, assessment of visual lesions in the dentition of wild-caught field voles may provide the basis of a scheme to monitor the magnitude and effects of environmental fluoride contamination on populations of wild and domestic mammals. The development of non-destructive methods to allow the repeated examination of the teeth of captured field voles, and hence the dynamic monitoring of environmental fluoride contamination, is also considered.  相似文献   
893.
A photochemical reactor for studies of atmospheric kinetics and spectroscopy has been built at the Copenhagen Center for Atmospheric Research. The reactor consists of a vacuum FTIR spectrometer coupled to a 100 L quartz cylinder by multipass optics mounted on electropolished stainless steel end flanges, surrounded by UV-A, UV-C and broadband sun lamps in a temperature-controlled housing. The combination of a quartz vessel and UV-C lamps allows higher concentrations of O(1D) and OH than can be generated by similar chambers. The reactor is able to produce radical concentrations of ca. 8 × 1011 cm?3 for OH, 3 × 106 cm?3 for O(1D), 3.3 × 1010 cm?3 for O(3P) and 1.6 × 1012 cm?3 for Cl. The reactor can be operated at pressures from 10?3 to 103 mbar and temperatures from 240 to 330 K. As a test of the system we have studied the reaction CHCl3 + Cl using the relative rate technique and find kCHCl3+Cl/kCH4+Cl = 1.03 ± 0.11, in good agreement with the accepted value.  相似文献   
894.
Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as “indoor at home.” By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental characterizations for the chemicals of interest. Consistent with many earlier studies, personal exposures are difficult to predict using data from regional outdoor monitors.  相似文献   
895.
Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation.  相似文献   
896.
Global change affects alpine ecosystems by, among many effects, by altering plant distributions and community composition. However, forecasting alpine vegetation change is challenged by a scarcity of studies observing change in fixed plots spanning decadal-time scales. We present in this article a probabilistic modeling approach that forecasts vegetation change on Niwot Ridge, CO using plant abundance data collected from marked plots established in 1971 and resampled in 1991 and 2001. Assuming future change can be inferred from past change, we extrapolate change for 100 years from 1971 and correlate trends for each plant community with time series environmental data (1971–2001). Models predict a decreased extent of Snowbed vegetation and an increased extent of Shrub Tundra by 2071. Mean annual maximum temperature and nitrogen deposition were the primary a posteriori correlates of plant community change. This modeling effort is useful for generating hypotheses of future vegetation change that can be tested with future sampling efforts.  相似文献   
897.
Here we investigate the response of soils and litter to 5 years of experimental additions of ammonium (NH4), nitrate (NO3), and ammonia (NH3) to an ombrotrophic peatland. We test the importance of direct (via soil) and indirect (via litter) effects on phosphatase activity and efflux of CO2. We also determined how species representing different functional types responded to the nitrogen treatments. Our results demonstrate that additions of NO3, NH4 and NH3 all stimulated phosphatase activity but the effects were dependent on species of litter and mechanism (direct or indirect). Deposition of NH3 had no effect on efflux of CO2 from Calluna vulgaris litter, despite it showing signs of stress in the field, whereas both NO3 and NH4 reduced CO2 fluxes. Our results show that the collective impacts on peatlands of the three principal forms of nitrogen in atmospheric deposition are a result of differential effects and mechanisms on individual components.  相似文献   
898.
In many locations in Eastern Canada, ambient levels of fine particulate matter (PM,25) and surface ozone (O3) depend on airflow direction and synoptic scale meteorological conditions. In this study, a cluster analysis was performed on 10 yr (1994-2003) of back-trajectory data for 11 locations in Eastern Canada, resulting in the identification of 10 unique back-trajectory clusters (or airflows) for each location. The airflows were then used to characterize and identify spatial and temporal trends in the daily maximum 8-hr average O3 (dmax 8-hr O3) and the daily average PM2.5 levels. Results showed that airflows from the southwest passing over Michigan and Southern Ontario were associated, on average, with the highest O3 levels at most locations in Eastern Canada. For PM2.5, the highest levels occurred with airflows from the Eastern Ohio River Valley. At major urban locations in Ontario and Quebec, the warm season mean (May to September) dmax 8-hr O3 and the annual mean PM2.5 were, on average, 12 parts per billion and 7.6 microg/m3 higher, respectively, than airflows from the north. Elevated levels of O3 and PM2.5 also occurred under light airflows, and, on average, the levels under light airflows were higher than their nonlight counterparts. At several locations in Canada, including Toronto, Montreal, Quebec City, and Kejimkujik, the annual warm season mean dmax 8-hr O3 experienced a statistically significant (95% confidence) increasing trend over the 10-yr period. When airflow direction was considered, a number of locations experienced statistically significant upward trends in O3 for airflow from the north and northwest. Several locations also showed significant upward trends associated with airflow from the southwest passing over Michigan and Southwestern Ontario. Although there are no statistically significant downward trends, airflows from the southwest have shown a reduction in O3 levels in Southwestern Ontario in more recent years.  相似文献   
899.
Because of recent concerns about the health effects of ultrafine particles and the indication that particle toxicity is related to surface area, we have been examining techniques for measuring parameters related to the surface area of fine particles, especially in the 0.003- to 0.5-microm size range. In an earlier study, we suggested that the charge attached to particles, as measured by a prototype of the Electrical Aerosol Detector (EAD, TSI Inc., Model 3070), was related to the 1.16 power of the mobility diameter. An inspection of the pattern of particle deposition in the lung as a function of particle size suggested that the EAD measurement might be a useful indicator of the surface area of particles deposited in the lung. In this study, we calculate the particle surface area (micrometer squared) deposited in the lung per cubic centimeter of air inhaled as a function of particle size using atmospheric particle size distributions measured in Minneapolis, MN, and East St. Louis, IL. The correlations of powers of the mobility diameter, Dx, were highest for X = 1.1-1.6 for the deposited surface area and for X = 1.25 with the EAD signal. This overlap suggested a correspondence between the EAD signal and the deposited surface area. The correlation coefficients of the EAD signal and particle surface area deposited in the alveolar and tracheobronchial regions of the lung for three breathing patterns are in the range of Pearson's r = 0.91-0.95 (coefficient of determination, R2 = 0.82-0.90). These statistical relationships suggest that the EAD could serve as a useful indicator of particle surface area deposited in the lung in exposure and epidemiologic studies of the human health effects of atmospheric particles and as a measure of the potential surface area dose for the characterization of occupational environments.  相似文献   
900.
Dual-screened groundwater circulation wells (GCWs) can be used to remove contaminant mass and to mix reagents in situ. GCWs are so named because they force water in a circular pattern between injection and extraction screens. The radial extent, flux and direction of the effective flow of this circulation cell are difficult to measure or predict. The objective of this study is to develop a robust protocol for assessing GCW performance. To accomplish this, groundwater flow patterns surrounding a GCW are assessed using a suite of tools and data, including: hydraulic head, in situ flow velocity, measured hydraulic conductivity data from core samples, chemical tracer tests, contaminant distribution data, and numerical flow and transport models. The hydraulic head data show patterns that are consistent with pumping on a dual-screened well, however, many of the observed changes are smaller than expected. In situ thermal perturbation flow sensors successfully measured horizontal flow, but vertical flow could not be determined with sufficient accuracy to be useful in mapping flow patterns. Two types of chemical tracer tests were utilized at the site and showed that much of the flow occurs within a few meters of the GCW. Flow patterns were also assessed based on changes in contaminant (trichloroethylene, TCE) concentrations over time. The TCE data clearly showed treated water moving away from the GCW at shallow and intermediate depths, but the circulation of that water back to the well, except very close to the well, was less clear. Detailed vertical and horizontal hydraulic conductivities were measured on 0.3 m-long sections from a continuous core from the GCW installation borehole. The measured vertical and horizontal hydraulic conductivity data were used to construct numerical flow and transport models, the results of which were compared to the head, velocity and concentration data. Taken together, the field data and modeling present a fairly consistent picture of flow and transport around the GCW. However, the time and expense associated with conducting all of those tests would be prohibitive for most sites. As a consequence, a sequential protocol for GCW characterization is presented here in which the number of tools used can be adjusted to meet the needs of individual sites. While not perfect, we believe that this approach represents the most efficient means for evaluating GCW performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号