首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10034篇
  免费   8篇
  国内免费   9篇
安全科学   13篇
废物处理   779篇
环保管理   1265篇
综合类   1012篇
基础理论   3180篇
污染及防治   1838篇
评价与监测   1037篇
社会与环境   912篇
灾害及防治   15篇
  2023年   8篇
  2022年   13篇
  2021年   22篇
  2020年   16篇
  2019年   9篇
  2018年   1485篇
  2017年   1388篇
  2016年   1223篇
  2015年   138篇
  2014年   40篇
  2013年   45篇
  2012年   482篇
  2011年   1363篇
  2010年   703篇
  2009年   614篇
  2008年   897篇
  2007年   1243篇
  2006年   14篇
  2005年   28篇
  2004年   45篇
  2003年   74篇
  2002年   112篇
  2001年   19篇
  2000年   13篇
  1999年   6篇
  1998年   11篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   11篇
  1983年   8篇
  1982年   1篇
  1977年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
32.
Independent teams undertook environmental monitoring of particular concentrations of major construction projects forming part of Hong Kong’s U.S. $20 billion airport infrastructure programme located in dense urban areas. The team combination of environmental specialists with experienced civil engineers enabled pragmatic mitigation measures to be developed and accepted by the construction personnel with the result that potentially significant adverse impacts were averted. The authors discuss the mechanism and success of this innovative approach.  相似文献   
33.
Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or batch wise by ships, trucks, railway or airplanes. All batch transportation requires a storage system but also pipelines can be used as pressure storage system. Hydrogen exhibits the highest heating value per weight of all chemical fuels. Furthermore, hydrogen is regenerative and environment friendly. There are two reasons why hydrogen is not the major fuel of toady’s energy consumption: First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water. This implies that we have to pay for this energy, which results in a difficult economic task, because since the industrialization we are used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is the low critical temperature of 33 K, i.e. hydrogen is a gas at room temperature. For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage system is crucial. Hydrogen can be stored by six different methods and phenomena: high pressure gas cylinders (up to 800 bar), liquid hydrogen in cryogenic tanks (at 21 K), adsorbed hydrogen on materials with a large specific surface area (at T < 100 K), absorbed on interstitial sites in a host metal (at ambient pressure and temperature), chemically bond in covalent and ionic compounds (at ambient pressure), oxidation of reactive metals e.g. Li, Na, Mg, Al, Zn with water. These metals easily react with water to the corresponding hydroxide and liberate the hydrogen from the water. Finally, the metal hydroxides can be thermally reduced to the metals in a solar furnace.  相似文献   
34.
Enhanced bioremediation is quickly developing into an economical and viable technology for the remediation of contaminated soils. Until recently, chlorinated organic compounds have proven difficult to bioremediate. Environmentally recalcitrant compounds, such as polychlorinated biphenyls (PCBs) and persistent organic pesticides (POPs) such as dichlorodiphenyl trichloroethane (DDT) have shown to be especially arduous to bioremediate. Recent advances in field‐scale bioremedial applications have indicated that biodegradation of these compounds may be possible. Engineers and scientists at the Savannah River Site (SRS), a major DOE installation near Aiken, South Carolina, are using enhanced bioremediation to remediate soils contaminated with pesticides (DDT and its metabolites, heptachlor epoxide, dieldrin, and endrin) and PCBs. This article reviews the ongoing remediation occurring at the Chemicals, Metals, and Pesticides (CMP) Pits using windrow turners to facilitate microbial degradation of certain pesticides and PCBs. © 2003 Wiley Periodicals, Inc.  相似文献   
35.
The reestablisment of autochthonous plant species is an essential strategy for recovering degraded areas under semiarid conditions. A field experiment was carried out to assess the short-term effect of two reafforestation methods involving mycorrhizal inoculation and compost addition on soil quality parameters and Rhamnus lycioides seedling growth. The nutrient content (NPK) and enzymatic activities (dehydrogenase, urease, protease-BAA, acid phosphatase and β-glucosidase) increased and bulk density decreased in the rhizosphere soil with the organic amendment. Biomass C of rhizosphere soil increased by at least 240% with respect to the control soil after mycorrhizal inoculation and the combination of compost addition + mycorrhizal inoculation. Both mycorrhizal inoculation and composted organic residue addition increased R. lycioides seedling growth in the same proportion. In the short term, we conclude that the application of both reafforestation methods not only enhances the establishment of R. lycioides seedlings, but also improves soil quality.  相似文献   
36.
CO2-free paper?     
Black liquor gasification–combined cycle (BLGCC) is a new technology that has the potential to increase electricity production of a chemical pulping mill. Increased electricity generation in combination with the potential to use biomass (e.g. bark, hog fuel) more efficiently can result in increased power output compared to the conventional Tomlinson-boiler. Because the BLGCC enables an integrated pulp and paper mill to produce excess power, it can offset electricity produced by power plants. This may lead to reduction of the net-CO2 emissions. The impact of BLGCC to offset CO2 emissions from the pulp and paper industry is studied. We focus on two different plant designs and compare the situation in Sweden and the US. The CO2 emissions are studied as function of the share of recycled fibre used to make the paper. The study shows that under specific conditions the production of “CO2-free paper” is possible. First, energy efficiency in pulp and paper mills needs to be improved to allow the export of sufficient power to offset emissions from fossil fuels used in boilers and other equipment. Secondly, the net-CO2 emission per ton of paper depends strongly on the emission reduction credits for electricity export, and hence on the country or grid to which the paper mill is connected. Thirdly, supplemental use of biomass to replace fossil fuel inputs is important to reduce the overall emissions of the pulp and paper industry.  相似文献   
37.
38.
39.
This study aimed at finding effective strategies for high-performance removal of reactive blue 19 (RB19) dye from aqueous solution. Chitosan (CS) films had been prepared by using solvent casting with mild drying for this purpose. The CS films were characterized by X-ray diffraction, field-emission scanning electron microscopy, and Fourier transform infrared (FTIR) spectroscopy. The performance of RB19 removal using CS were evaluated by varying contact time, solution pH, initial dye concentration, and adsorbent dosage. Adsorption isotherms, kinetics, and desorption were investigated by batch experiments. Results showed that CS films exhibited the optimal adsorption performance for RB19 removal and high maximum adsorption capacities of RB19, which were 799 and 822.4 mg g?1 at 20 and 40 °C, respectively. Adsorption kinetic data were well described by the pseudo-second-order kinetic model. FTIR analyses further indicated that interactions between RB19 and the CS film occurred during adsorption. The CS films also exhibited satisfactory desorption of RB19 at about 80 % after 30 min of desorption at pH 11. Our study demonstrated that the CS films can be easily prepared and applied for effective removal of RB19 in treatment of wastewater.  相似文献   
40.
The fifth meeting of INRA’s national network of ecotoxicologists took place on 25 to 27 November 2014 in Biarritz, France. The main aim of the meeting was to bring together ecotoxicologists from INRA and associated partners, providing them ample opportunity to share and discuss their latest scientific results as well as the national policy of research in ecotoxicology and to precise perspectives for the network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号